INVITED REVIEW ARTICLE : Studies on TiO₂Photocatalytic Reactions

초청총설논문 : TIO₂광촉매 반응 연구

Choe, Won Yong
최원용

  • Published : 20030000

Abstract

반도체 광촉매는 태양에너지 전환, 환경오염물질 분해, 초친수성 및 자정기능 소재 등으로 최근 활발히 연구되고 있는 분야이다. 광촉매 연구는 기초 및 응용과학 분야에 걸쳐 매우 다양한 관점에서 진행되고 있으며 관련 연구자들의 학문적 배경도 매우 다양한 학제적 성격을 띠고 있다. 본 총설에서는 광촉매로 가장 널리 사용되고 있는 TiO₂의 특성에 대하여 개관하고, 이를 이용하여 본 연구실에서 수행한 여러가지 난분해성 오염물질들의 광촉매 분해반응 연구 사례들을 소개한다. 기술된 광촉매 분해반응은 액체/TiO₂, 기체/TiO₂, 고체/TiO₂ 계면 시스템을 모두 포함하며 대상 물질들은 다이옥신, 유기염소화합물, 암모니아, 비소이온, 일산화탄소, 검댕, 고분자 필름 등 이다. 광촉매 상에서의 오염물질 분해반응은 대부분의 경우 표면에서 생성된 OH 라디칼의 강력한 산화력에 기인하나, 전체적인 메커니즘은 OH 라디칼 뿐만 아니라 공유대 정공, 전도대 전자, O₂, superoxides (O₂-, HO₂)등이 관련되는 일련의 산화환원 표면반응이 복잡하게 연계되어 일어난다. 광촉매 분해반응 메커니즘은 대상물질에 따라 매우 다양한 양상을 보이며 일반화시키기 매우 어렵다. 또한, TiO₂광촉매에 가시광 활성을 부여하기 위하여 제조된 ruthenium complex-sensitized TiO2의 특성과 가시광 반응 활성, 표면에서의 광여기 전자전이 반응을 증대시키기 위해 제조된 surface platinized TiO₂(Pt/TiO₂)의 특성과 몇 가지 광촉매 반응 시스템들에서의 메카니즘과의 관련성 등을 논한다.

Keywords

References

  1. Nature v.238 Electrochemical photolysis of water at a semiconductor electrode A.Fujishima;K.Honda https://doi.org/10.1038/238037a0
  2. Chem. Rev. v.95 Environmental applications of semiconductor photocatalysis M.R.Hoffmann;S.T.Martin;W.Choi;D.W.Bahnemann https://doi.org/10.1021/cr00033a004
  3. Photocatalytic Purification and Treatment of Water and Air D.F.Ollis(ed.);H.Al-Ekabi(ed.)
  4. Environ. Sci. Technol. v.34 Photocatalytic degradation of polychlorinated dibenzo-p-dioxins on TiO₂film under UV or solar light irradiation W.Choi;S.J.Hong;Y.S.Chang;Y.Cho https://doi.org/10.1021/es0011461
  5. Environ. Sci. Technol. v.36 Kinetics and mechanisms of photocatalytic degradation of $(CH_3)_nNH_{4\n}^-$(0≤n≤4) in TiO₂suspension: the role of OH radicals S.Kim;W.Choi https://doi.org/10.1021/es015560s
  6. Environ. Sci. Technol. v.36 Photocatalytic oxidation of arsenite in TiO₂suspension: kinetics and mechanisms H.Lee;W.Choi https://doi.org/10.1021/es0158197
  7. Nature v.388 Light-induced amphiphilic surfaces R.Wang;K.Hashimoto;A.Fujishima;M.Chikuni;E.Kojima;A.Kitamura;M.Shimohigoshi;T.Watanabe https://doi.org/10.1038/41233
  8. Environ. Sci. Technol. v.32 Bactericidal and detoxification of TiO₂thin film photocatalysts K.Sunada;Y.Kikuchi;K.Hashimoto;A.Fujishima https://doi.org/10.1021/es970860o
  9. Electrochemistry v.68 Effects of themal and evacuating treatments on photo-induced hydrophilic conversion at TiO₂surfaces T.Minabe;A.Fujishima;A.Nakajima;T.Watanabe;K.Hashimoto
  10. Langmuir v.16 Transparent superhydrophobic then films with self-cleaning properties A.Nakajima;K.Hashimoto;T.Watanabe;K.Takai;G.Yamauchi;A.Fujishima https://doi.org/10.1021/la000155k
  11. Thin Solid Films v.351 Photocatalytic activity and photoinduced hydrophilicity of titanium dioxide coated glass T.Watanabe;A.Nakajima;R.Wang;T.Minabe;S.Koizumi;A.Fujishima;K.Hashimoto https://doi.org/10.1016/S0040-6090(99)00205-9
  12. J. Phys. Chem. B v.105 Enhancement of the photoinduced hydrophilic conversion rate of TiO₂film electrode surfaces by anodic polarization N.Sakai;A.Fujishima;T.Watanabe;K.Hashimoto https://doi.org/10.1021/jp003212r
  13. Electrochem. Commun. v.5 Bactericidal effect of an energy storage TiO₂-WO₃photocatalyst in dark T.Tatsuma;S.Takeda;S.Saitoh;Y.Ohko;A.Fujishima https://doi.org/10.1016/j.elecom.2003.07.003
  14. Ind. Eng. Chem. Res. v.41 Development of photocatalytic coating agents with indicator dyes J.F.Zhi;H.B.Wang;A.Fujishima https://doi.org/10.1021/ie0104722
  15. TiO₂Photocatalysis: Fundamentals an Applications A.Fujishima;K.Hashimoto;T.Watanabe
  16. 광촉매의 세계 다게우찌 고우지;무라사와 사다오;이부스키 다가시;김영도(옮김)
  17. J. Electrochem. Soc. v.148 Photoelectrochemical anticorrosion and self-cleaning effects of a TiO₂coating for type 304 stainless steel Y.Ohko;S.Saitoh;T.Tatsuma;A.Fujishima https://doi.org/10.1149/1.1339030
  18. Nature v.414 Direct splitting of water under visible light irradiation with an oxide semiconductor photocatalyst Z.Zou;J.Ye;K.Syama;H.Arakawa https://doi.org/10.1038/414625a
  19. Science v.297 Efficient photochemical water splitting by a chemically modified n-TiO₂ S.U.M.Khan;M.Al-Shahry;W.B.Ingler Jr. https://doi.org/10.1126/science.1075035
  20. Chem. Commun. Highly donor-doped (110) layered perovskite materials as novel photocatalysts for overall water splitting H.G.Kim;D.W.Hwang;J.Kim;Y.G.Kim;J.S.Lee
  21. J. Mol. Catal. v.74 Photocatalytic reduction of CO₂on anchored titanium oxide catalysts M.Anpo;K.Chiba https://doi.org/10.1016/0304-5102(92)80238-C
  22. Energy Conversion and Management v.36 Photocatalytic synthesis of CH₄and CH₃OH from CO₂and H₂O on highly dispersed active titanium oxide catalysts H.Yamada;A.Shiga;S.kawasaki;Y.lchihashi;S.Ehara;M.Anpo https://doi.org/10.1016/0196-8904(95)00081-N
  23. Angew. Chem. Int. Ed. v.40 Nitrogen photofixation at nanostructured iron titanate films O.Rusina;A.Eremenko;G.Frank;H.P.Strunk;H.Kisch https://doi.org/10.1002/1521-3773(20011105)40:21<3993::AID-ANIE3993>3.0.CO;2-6
  24. Nature v.353 A low-ocst, high-efficiency solar cell based on dye-sensitized colloidal TiO₂films B.O'Regan;M.Grtzel https://doi.org/10.1038/353737a0
  25. Chem. Rev. v.95 Light-induced redox reactions in nanocrystalline systems A.Hagfeldt;M.Grtzel https://doi.org/10.1021/cr00033a003
  26. J. Phys. Chem. v.91 Sensitization of titanium dioxide in the visible light region using zine porphyrins K.Kayanasundaram;N.Vlachopoulos;V.Krichnan;A.Monnier;M.Grtzel https://doi.org/10.1021/j100293a027
  27. J. Phys. Chem. B v.101 Ultrafast electron injection: Implications for a photoelectrochemical cell utilizing an anthocyanin dye-sensitized TiO₂nanocrystalline electrode N.J.Cherepy;G.P.Smestad;M.Grtzel;J.Z.Zhang https://doi.org/10.1021/jp972197w
  28. J. Electrochem. Soc. v.142 Characterization of sol-gel-derived TiO₂coatings and their photoeffects on copper substrates J.Yuan;S.Tsujikawa https://doi.org/10.1149/1.2050002
  29. Chem. Mater. v.13 TiO₂-WO₃photoelectrochemical anticorrosion system with an energy storage ability T.Tatsuma;S.Saitoh;Y.Ohko;a.Fujishima https://doi.org/10.1021/cm010024k
  30. Chem. Commun. A novel photoelectrochemical method of metal corrosion prevention using a TIO₂solar panel H.Park;K.Y.Kim;W.Choi
  31. J. Phys. Chem. B v.106 Photoelectrochemical approach for metal corrosion prevention using a semiconductor photoanode H.Park;K.Y.Kim;W.Choi https://doi.org/10.1021/jp025519r
  32. J. Photochem. Photobiol. A: Chem. v.106 Photocatalytic bactericidal effect of TiO₂thin films: dynamic view of the active oxygen species responsible for the effect Y.Kikuchi;K.Sunada;T.Iyoda;K.Hashimoto;A.Fujishima https://doi.org/10.1016/S1010-6030(97)00038-5
  33. Langmuir v.18 Patterning of solid surfaces by photocatalytic lithography based on the remote oxidation effect of TiO₂ T.Tatsuma;W.Kudo;A.Fujishima https://doi.org/10.1021/la026246u
  34. J. Am. Chem. Soc. v.125 Surface treatment of silicon carbide using TiO₂(IV) photocatalyst Y.Ishikawa;Y.Mastumoto;Y.Nishida;S.Taniguchi;J.Watanabe https://doi.org/10.1021/ja020359i
  35. '98 에너지 기술개발 동향, 광학학에너지 변환 및 활용기술 (KISIET 조사자료 99-05) 오정무;이경원(편저)
  36. 광촉매 기술 및 시장 동향 (주) 비아글로벌;산업자원부 기술표준원
  37. Progress in Inorganic Chemistry v.41 Principles and applications of semiconductor photoelectrochemistry M.X.Tan;P.E.Laibinis;S.T.Nguyen;J.M.Kesselman;C.E.Stanton;N.S.Lewis;K.D.Karlin(ed.) https://doi.org/10.1002/9780470166420.ch2
  38. 광촉매의 국내외 산업동향 및 업체별 사업화 추진전략 박영서;홍성화;김강회
  39. J. Phys. Chem. v.95 Role of OH radicals and trapped holes in photocatalysis: a pulse radiolysis study D.Lawless;N.Serpone;D.Meisel https://doi.org/10.1021/j100166a047
  40. Langmuir v.7 Pulse radiolytic studies of the reaction of pentahalophenols with OH radicals: Formation of pentahalophenoxyl, dihydroxypentahalocyclohexadienyl, and semiquinone radicals R.Terzian;N.Serpone;R.B.Draper;M.A.Fox;E.Pellizzetti https://doi.org/10.1021/la00060a030
  41. J. Phys. Chem. v.95 Identification of organic acids and other intermediates in oxidative degradation of chlorinated ethanes on TiO₂surfaces en route to mineralization. A combined photocatalytic and radiation chemistry study Y.Mao;C.Schneich;K.D.Asmus https://doi.org/10.1021/j100177a085
  42. The Study of Fast Processes and Transient Species by Electron Pulse Radiolysis G.V.Buxton;D.Reidel(ed.)
  43. J. Phys. Chem. Ref. Data v.17 Critical reviews of rate constants for reactions of hydrated electrons, hydrogen atoms and hydroxyl radicals (OH/O-) in a aqueous solution G.V.Buxton;C.L.Greenstock;W.P.Helman;A.B.Ross https://doi.org/10.1063/1.555805
  44. Heterogeneous Photochemical Electron Transfer M.Grtzel
  45. Langmuir v.16 Novel silica gel supported TiO₂ photocatalyst synthesized by CVD method Z.Ding;X.J.Hu;G.Q.Lu;P.L.Yue;P.F.Greenfield https://doi.org/10.1021/la000119l
  46. J. Photochem. Photobiol. A: Chem. v.151 Novel TiO₂CVD films for semiconductor photocatalysis A.Mills;N.Elliott;I.P.Parkin;S.A.O'Neill;R.J.Clark https://doi.org/10.1016/S1010-6030(02)00190-9
  47. Chem. Mater. v.15 Synthesis of mesostructured titania with controlled crystalline framework H.M.Luo;C.Wang;Y.S.Yan https://doi.org/10.1021/cm0302882
  48. Chem. Mater v.9 Sol-gel template synthesis of semiconductor nanostructures B.B.Lakshmi;P.K.Dorhout;C.R.Martin https://doi.org/10.1021/cm9605577
  49. J. Mater. Sci. Lett. v.20 Sol gel template preparation of TiO₂nanotubes and nanorods M.Zhang;Y.Bando;K.Wada https://doi.org/10.1023/A:1006739713220
  50. Chem. Mater. v.15 Fabrication of titania tubules with high surface area and well-developed mesostructural walls by surfactant-mediated templating method T.Y.Peng;A.Hasegawa;J.R.Qiu;K.Hirao https://doi.org/10.1021/cm020828f
  51. Appl. Spectrosc. v.48 Nanosecond time-resolved infrared spectroscopy with a dispersive scanning spectrometer T.Yuzawa;C.Kato;M.W.George;H.Hamaguchi https://doi.org/10.1366/000370294774368947
  52. J. Phys. Chem.B v.101 Direct time-resolved infrared measurement of electron injection in dye-sensitized titanium dioxide films T.A.Heimer;E.J.Heilweil https://doi.org/10.1021/jp972560z
  53. J. Phys. Chem. B. v.102 Direct observation of ultrafast electron injection from coumarin 343 to TiO₂nanoparticles by femtosecond infrared spectroscopy H.N.Ghosh;J.B.Asbury;T.Lian https://doi.org/10.1021/jp981806c
  54. J. Phys. Chem. B v.105 Water- and oxygen-induced decay kinetics of photogenerated electrons in TiO₂and Pt/TiO₂: a time-resolved infrared absorption study A.Yamakata;T.Ishibashi;H.Onishi https://doi.org/10.1021/jp010802w
  55. J. Photochem. Photobiol. A v.70 Photocatalytic degradation of trichloroethylene in the gas phase using titanium dioxide pellets S.Yamazaki-Nishida;K.J.Nagano;L.A.Philps;S.Cerveramarch;M.A.Anderson https://doi.org/10.1016/1010-6030(93)80013-Y
  56. Environ. Sci. Technol. v.27 Direct mass spectrometric studies of the destruction of hazardous wastes. 2. Gas=phase photocatalytic oxidation of trichloroethylene over titanium oxide: products and mechanisms M.R.Nimlos;W.A.Jacovy;D.M.Blake;T.A.Milne https://doi.org/10.1021/es00041a018
  57. Appl. Catal. B v.31 Investigation on TiO₂-coated optical fibers for gas-phase photocatalytic oxidation of acetone W.Choi;J.Y.Ko;H.Park;J.S.Chung https://doi.org/10.1016/S0926-3373(00)00281-2
  58. J. Catal. v.136 Heterogeneous photocatalytic oxidation of gas-phase organics for air purification : acetone,1-butanol, butyraldehyde, formaldehyde and m-xylene oxidation J.Peral;D.F.Ollis https://doi.org/10.1016/0021-9517(92)90085-V
  59. Environ. Sci. Technol. v.26 Fluidized-bed photocatalytic oxidation of trichloroethylene in contaminated air streams L.A.Dibble;G.B.Raupp https://doi.org/10.1021/es00027a006
  60. Catalysis Today v.54 Relationship between TiO₂particle size and reactor diameter in solar photoreactors efficiency P.Fernandez-lbanez;S.Malato;F.J.Nieves https://doi.org/10.1016/S0920-5861(99)00182-0
  61. Appl. Catal. B: Environ. v.19 Aniline degradation by combined photocatalysis and ozonation L.Sanchez;J.Peral;X.Deomenech https://doi.org/10.1016/S0926-3373(98)00058-7
  62. Chemosphere v.38 Degrdation of nitrogen containing organic compounds by combined photocatalysis and ozonation M.Klare;G.Waldner;R.Bauer;H.Jacobs;J.A.C.Broekaert https://doi.org/10.1016/S0045-6535(98)00414-7
  63. Environ. Sci. Technol. v.34 Combinative sonolysis and photocatalysis for textile dye degradation N.L.Stock;J.Peller;K.Vinodgopal;P.V.Kamat https://doi.org/10.1021/es991231c
  64. Wat. Res. v.32 Combined photocatalytic and fungal treatment for the destruction of 2,4,6-trinitrotoluene (TNT) T.F.Hess;T.A.Lewis;R.L.Crawford;S.Katamneni;J.H.Wells;R.J.Watts https://doi.org/10.1016/S0043-1354(97)00364-3
  65. J. Chem. Technol. Biotechnol. v.77 Photocatalytic pretratment of contaminated groundwater for biological nitrification enhancement Z.S.Zhang;W.A.Anderson;M.Moo-Young https://doi.org/10.1002/jctb.547
  66. Chem. Lett. v.3 Selective killing of a single cancerous T24 cell with TiO₂semiconducting microelectrode under irradiation H.Sakai;R.Baba;K.Hashimoto;Y.Kubota;A.Fujishima
  67. Sep. Purif. Methods. v.28 Application of the photocatalytic chemistry of titanium dioxide to disinfection and the killing of cancer cells D.M.Blake;P.C.Maness;Z.Huang;E.J.Wolfrum;J.Huang;W.A.Jacoby https://doi.org/10.1080/03602549909351643
  68. J. Porphysins Phthalocyanines v.3 Catalysis and photocatalysis by phthalocyanines for technology, ecology and medicine O.L.Kaliya;E.A.Lukyanets;G.N.Vorozhtsov https://doi.org/10.1002/(SICI)1099-1409(199908/10)3:6/7<592::AID-JPP180>3.0.CO;2-G
  69. J. Photochem. Photobiol. A v.156 Studies on photokilling of bacteria on TiO₂thin film K.Sunada;T.Watanabe;K.Hashimoto https://doi.org/10.1016/S1010-6030(02)00434-3
  70. Environ. Sci. Technol. v.37 Bactericidal activity of copper deposited TiO₂thin film under weak UV light illumination K.Sunada;T.Watanabe;K.Hashimoto https://doi.org/10.1021/es034106g
  71. Chem. Rev. v.93 Heterogeneous photocatalysis M.A.Fox;M.T.Dulay https://doi.org/10.1021/cr00017a016
  72. Chem. Rev. v.95 Photocatalysis on TiO₂surfaces: Principles, mechanisms, and selected results A.L.Linsebigler;G.Lu;J.T.Yates https://doi.org/10.1021/cr00035a013
  73. J. Chem. Technol. Biotechnol. v.70 Heterogeneous photocatalysis for purification, decontamination and deodorization of air J. Peral;X.Domenech;D.F.Ollis https://doi.org/10.1002/(SICI)1097-4660(199710)70:2<117::AID-JCTB746>3.0.CO;2-F
  74. J. Photochem. Photobiol. A v.108 An ovcrview of semiconductor photocatalysis A.Mills;S. Le Hunte https://doi.org/10.1016/S1010-6030(97)00118-4
  75. Bibliography of Work on the Photocatalytic Removal of Hazardous Compounds from Watcr and Air (NREL/TP-430-6084) D.M.Blake(ed.)
  76. Bibliography of Work on the Photocatalytic Removal of Hazardous Compounds from Water and Air (NREL/TP-570-26797) D.M.Blake(ed.)
  77. Bibliography of Work on the Photocatalytic Removal of Hazardous Compounds from Water and Air (NREL/TP510-31319) D.M.Blake(ed.)
  78. Chemistry of Atmosphere($3^{rd}$ ed.) R.P.Wayne
  79. Environ. Sci. Technol. v.25 Photolysis of chloroform and other organic molecules in aqueous titanium dioxide suspensions C.Kormann;D.W.Bahnemann;M.R.Hoffmann https://doi.org/10.1021/es00015a018
  80. J. Photochem. Photobiol. A v.143 Solid-phase photocatalytic degradation of PVCTiO₂polymer composites S.Cho;W.Choi https://doi.org/10.1016/S1010-6030(01)00499-3
  81. J. Phys. Chem. B v.106 Solid phase photocatalytic reaction on the soot/TiO₂interface: the role of migrating OH radicals M.C.Lee;W.Choi https://doi.org/10.1021/jp026617f
  82. Environ. Sci. Technol. v.29 Photoreductive mechanism of CCl₄degradation on TiO₂particles and effects of electron donors W.Choi;M.R.Hoffmann https://doi.org/10.1021/es00006a031
  83. Environ. Sci. Technol. v.31 Novel photocatalytic mechanisms for CHCI₃, CHBr₃, and $CCI_3CO_2^-$ degradation and the fate of photogenerated trihalomethyl radicals on TiO₂Environ W.Choi;M.R.Hoffmann https://doi.org/10.1021/es960157k
  84. J. Am. Chem. Soc. v.104 Visible light induced water cleavage in colloidal solutions of chromium-doped titanium dioxide particles E.Borgarello;J.Kiwi;M.Gratzel;E.Pelizzetti;M.Visca https://doi.org/10.1021/ja00375a010
  85. Angew. Chem. Int. Ed. v.37 Modified, amorphous Titania - a hybrid semiconductor for detoxification and current generation by visible light H.Kisch;L.Zang;C.Lange;W.F.Maier;C.Antonius;D.Meissner https://doi.org/10.1002/(SICI)1521-3773(19981116)37:21<3034::AID-ANIE3034>3.0.CO;2-2
  86. J. Phys. Chem. B v.102 Amorphous microporous titania modified with platinum(IV) chloride-a new type of hybrid photocatalyst for visible light detoxification L.Zang;C.Lange;I.Abraham;S.Storek;W.F.Maier;H.Kisch https://doi.org/10.1021/jp981755j
  87. Chem. Eur. J. v.6 Visible-light detoxification and charge generation by transition metal chloride modified titania L.Zang;W.Maycyl;C.Lange;W.F.Maier;C.Anonius;D.Meissner;H.Kisch https://doi.org/10.1002/(SICI)1521-3765(20000117)6:2<379::AID-CHEM379>3.0.CO;2-Z
  88. J. Phys. Chem. B v.105 Visible light driven V-doped TiO₂photocatalyst and its photooxidation of ethanol S.Kolsek;D.Raftery https://doi.org/10.1021/jp004295e
  89. J. Phys. Chem. B v.106 Visible-light-response and photocatalytic activities of TiO₂and SrTiO₃photocatalysis codoped with antimony and chromium K.Kato;A.Kudo https://doi.org/10.1021/jp0255482
  90. Science v.293 Visible-light photocatalysis in nitrogen-doped titanium oxides R.Ashahi;T.Morikawa;T.Ohwaki;K.Aoki;Y.Taga https://doi.org/10.1126/science.1061051
  91. J. Phys. Chem. v.98 The role of metalion dopants in quantum-sized TiO₂: correlation between photoreactivity and charge carrier recombination dynamics W.Choi;A.Termin;M.R.Hoffmann https://doi.org/10.1021/j100102a038
  92. J. Phys. Chem. v.98 Artificial photosynthesis. 2. investigations on the mechanism of photosensitization of nanocrystalline TiO₂solar cells by chlorophyll derivatives A.Kay;R.Humphry-Baker;M.Grtzel https://doi.org/10.1021/j100054a035
  93. J. Phys. Chem. v.96 Photoelectrochemistry in semiconductor particulate systems. 17. photosensitization of large-bandgap semiconductors: charge injection from triplet excited thionine into zine oxide colloids B.Patrick;P.V.Kamat https://doi.org/10.1021/j100182a072
  94. Langmuir v.6 Picosecond charge-transfer events in the photosensitization of colloidal titania P.V.Kamat https://doi.org/10.1021/la00092a037
  95. J. Phys. Chem. v.90 Photoelectrochemistry in particulate systems. 4. photosensitization of a titanium dioxide semiconductor with a chlorophyll analog P.V.Kamat;J.P.Charuvet;R.W.Fessesden https://doi.org/10.1021/j100398a035
  96. Environ. Sci. Technol. v.35 Visible light-induced degradation of carbon tetrachloride on dye-sensitized TiO₂ Y.Cho;W.Choi;C.H.Lee;T.Hyeon;H.I.Lee https://doi.org/10.1021/es001245e
  97. Environ. Sci. Technol. v.37 Highly enhanced photoreductive degradation of perchlorinated compounds on dye sensitized metal/TiO₂under visible light E.Bae;W.Choi https://doi.org/10.1021/es025617q
  98. J. Phys. Chem. B v.107 Photoelectrochemical investigation on electron transfer mediating behaviors of polyoxometalate in UV-illuminated suspensions of TiO₂ and Pt/TiO₂ H.Park;W.Choi https://doi.org/10.1021/jp027732t
  99. J. Ind. Eng. Chem. v.9 Nano Pt particles on TiO₂and their effects on photocatalytic reactivity W.Choi;J.Lee;S.Kim;S.Hwang;M.C.Lee;T.K.Lee https://doi.org/10.1021/ie50085a032
  100. Environ. Sci. Technol. v.36 Selective photocatalytic oxidation of NH₃ to N₂ on platinized TiO₂in water J.Lee;H.Park;W.Choi https://doi.org/10.1021/es025930s
  101. J. Phys. Chem. B v.106 Dual photocatalytic pathways of trichloroacetate degradation on TiO₂: effects of nanosized platinum deposits on kinetics and mechanism S.Kim;W.Choi https://doi.org/10.1021/jp0262261
  102. Appl. Catal. B v.46 Highly enhanced photocatalytic oxidation of CO on titania deposited with Pt nanoparticles: kinetics and mechanism S.Hwang;M.C.Lee;W.Choi https://doi.org/10.1016/S0926-3373(03)00162-0