Effect of Red, Blue, and Far-red LEDs for Night Break on Growth, Flowering, and Photosynthetic Rate in Perilla ocymoides

적색, 청색 및 원적색 LEDs를 이용한 광중단 처리가 들깨의 생장,개화및 광합성에 미치는 영향

Choi, Young-Hwan
최영환

  • Published : 20030000

Abstract

The effects of red, blue and far-red LEDs for night break on the growth, flowering, and photosynthetic rate of leafy perilla (Perilla ocymoides L. cv. Ipdlggae 1) were measured to obtain basic data for leaf growth increase and flowering delay in a greenhouse in winter. Red LEDs gave the most effective night break for growth of stem and leaf, and followed by blue LEDs, far-red LEDs, and dark. Red LEDs produced higher number, area, fresh and dry weights of leaves. Red LEDs did not initiate flowering up to 120 days after night break, and the rate of flowering was 84% in dark, 94% in far-red, and 54% in blue LEDs night break. The higher photosynthetic rate was observed with red LEDs and followed by blue and far-red LEDs for the night break and dark

겨울철 하우스에서 채엽용으로 많이 재배되고 있는 잎들깨의 개화를 지연시키고, 수량을 증대시킬 수 있는 방법을 개발하기 위하여 적색, 청색 및 근적색 LEDs를 이용한 광중단 처리와 야간의 완전 암 처리가 잎들깨의 생장, 개화 및 광합성에 미치는 영향을 조사하였다. 줄기의 생장은 적색광으로 광중단 처리를 하였을 때에 가장 촉진되었고, 다음은 청색광이었는데, 원적색광이 야간의 완전 암보다는 현저히 높았다. 잎수, 엽면적 및 잎의 생체중과 건물중은 적색 광중단 처리 시에 가장 좋았다. 개화 개시일은 원적색 광중단 처리는 약 54일, 야간의 완전 암은 60일, 청색광은 75일 후부터 개화하기 시작하였으나, 적색광은 120일 후에까지 전혀 개화하지 않았다. 광중단 처리 120일 후의 개화율은 원적색광에서 94%, 야간의 완전 암에서 84%, 청색광에서 54%였으나, 적색광에서는 0%였다. T/R률은 생장이 가장 왕성하였던 적색 광중단 처리가 531로서 가장 낮았고, 다음은 청색광이었으며, 야간의 완전 암 및 원적색 광중단 처리가 가장 높았다. 광합성률은 적색 광중단 처리에서 가장 높았으며, 다음은 청색광이었으며, 원적색광과 야간의 완전 암에서 가장 낮았다.

Keywords

References

  1. Bagnall, D.J. 1993. Light quality and vernalization interact in controlling late flowering in Arabidopsis ecotypes and mutants. Ann. Bot. 71:75-83 https://doi.org/10.1006/anbo.1993.1009
  2. Balegh, S.E. and O. Biddulph. 1970. The photosynthetic action spectrum of the bean plant. Plant Physiol. 46:1-5 https://doi.org/10.1104/pp.46.1.1
  3. Beever, J.E. and H.W. Woolhouse. 1975. Changes in the growth of roots and shoots when Perilla fructescens L. Britt. is induced to flower. J. Exp. Bot. 26:451-463 https://doi.org/10.1093/jxb/26.3.451
  4. Britz, S.J. and J.C. Sager. 1990. Photomorphogenesis and photoassimilation in soybean and sorghum grown under broad spectrum or blue deficient light sources. Plant Physiol. 82:909-915 https://doi.org/10.1104/pp.82.4.909
  5. Bulley, N.R., C.D. Nelson, and E.B. Tregunna. 1969. Photosynthesis: Action spectra for leaves in normal and low oxygen. Plant Physiol. 44: 678-684 https://doi.org/10.1104/pp.44.5.678
  6. Butler, S.J., S.B. Hendricks, and H.W. Siegelman. 1964. Actton spectra of phytochrome in vitro. Photochem. Photobiol. 3:521-528 https://doi.org/10.1111/j.1751-1097.1964.tb08171.x
  7. Cho, J.L., H. Kang, and J.C. Park. 1984. Effects of photoperiod and temperature on flowering of Perilla ocymoides L. J. Inst. Agr. Res. Util. Gyeongsang Natl. Univ. 18:27-32
  8. Choi, Y.W., C.K. Ahn, J.S. Kang, B.G. Son, I.S. Choi, Y.C. Kim, Y.G. Lee, K.K. Kim, Y.G. Kim, and K.W. Son. 2003. Growth, photomorphogenesis, and photosynthesis of perilla grown under red, blue light emitting diodes, and light intensities. J. Kor. Soc. Hort. Sci. 44:281-286
  9. Clark, J.B. and G.R. Lister. 1975. Photosynthetic action spectra of trees. Plant Physiol. 55:401-406 https://doi.org/10.1104/pp.55.2.401
  10. Fankhauser, C. and J. Chory. 1997 Light control of plant development. Annu. Rev. Cell Dev. Biol. 13:203-229 https://doi.org/10.1146/annurev.cellbio.13.1.203
  11. Hoenecke, M.E., R.J. Bula, and T.W. Tibbitts. 1992. Importance of blue photon lecels for lettuce seedlings grown under red-light-emitting diodes. HortScience 27:427-430
  12. Inada, K. 1973. Spectral dependence of growth and development of rice plant. Proc. Crop Sci. Soc. Jpn. 42:63-71 https://doi.org/10.1626/jcs.42.63
  13. Jacobs, W.P. 1952. The role of auxin in differentiation of xylem around a wound. Amer. J. Bot. 39:301-309 https://doi.org/10.2307/2438258
  14. Lee, Y.B. and B.Y. Lee. 1994. Effect of long-term CO2 enrichment on leaf temperature, diffusion resistance, and photosynthetic rate in tomato plant. J. Kor. Soc. Hort. Sci. 35:421-428
  15. Leiser, A.T., A.C. Leopold, and A.L. Slhelley. 1960. Elevation of light sources for plant growth. Plant Physiol. 35:392-395 https://doi.org/10.1104/pp.35.3.392
  16. McMahon, M.J., J.E. Kelly, and D.R. Decoteau. 1991. Growth of Dendranthema x grandiflirum (Ramat.) Kitamura under various spectral filters. J. Amer. Soc. Hort. Sci. 116:950-954
  17. MoCree, K.J. 1971. Significance of enhancement for calculations based on the action spectrum for photosynthesis. Plant Physiol. 49:704-706 https://doi.org/10.1104/pp.49.5.704
  18. Okamoto, K., T. Yanagi, S. Takita, M. Tanaka, T. Higuchi, Y. Ushida, and H. Watanabe. 1996. Development of plant growth apparatus using blue and red LED as artificial light source. Acta Hort. 440:111-116
  19. Quail, P.H. 1991. Phytochrome: A light-activated molecular switch that regulates plant gene expression. Annu. Rev. Genet. 25:389-409 https://doi.org/10.1146/annurev.ge.25.120191.002133
  20. Sachs, T. 1972. The induction of fiber differentiation in peas. Ann. Bot. 36:189-197
  21. Tissier. 1983. Histoire de l'Academie des Sciences de Paris 133-156
  22. Torrey, J.G. 1976. Root hormones and plant growth. Annu. Rev. Plant Physiol. 27:435-459 https://doi.org/10.1146/annurev.pp.27.060176.002251
  23. Yamazaki, K. 1982. Soilless culture. p. 34-40. Hakuyu Press, Tokyo