Nondestructive Separation of Viable and Nonviable Gourd (Lagenaria siceraria) Seeds Using Single Seed Near Infrared Spectroscopy

근적외선을 이용한 박의 단일 종자 단위로 발아 종자와 불발아 종자의 비파괴적인 선별

Min, Tai-Gi;Kang, Woo-Sik
민태기;강우식

  • Published : 20030000

Abstract

Near infrared (NIR) spectroscopy was used to classify viable and nonviable gourd (Lagenaria siceraria Standl) seeds. The spectra collected from single seed were perfectly distinguished from viable and nonviable seeds by principle component analysis. To discriminate viable and nonviable seeds, multivariate classification model was developed with a discriminant partial least squares (PLS) 2 method. The calibration model derived by PLS 2 method based on the first derivative NIR reflectance spectra in the range of 1100-2500 nm resulted in a 100% classification rate. The calibration model with the first derivative spectra predicted 96% viable and 95% nonviable seeds from the unknown samples. The results shows the possibility of using NIR spectroscopy in a seed separating process in the future provided that appropriate sorting devices are developed.

근적외선을 이용하여 박(Lagenaria siceraria Standl) 종자의 발아 종자와 불발아 종자를 비 파괴적으로 판별하는 시험을 수행하였다. 단일 종자 단위로 근적외선(NIR) 파장을 수집하였다. 수집된 파장에서 발아 종자와 불발아 종자에서 얻은 파장을 분리하여 주성분 분석한 결과 매우 뚜렷하게 발아 종자와 불발아 종자 그룹으로 분리되었다. 미지의 종자에서 발아 종자와 불발아 종자를 판별하기 위하여 다중 회귀 분석의 하나인 부분 최소 자승법 2을 이용하였다. 1차 미분된 1100-2500nm의 근적외선 파장을 이용하여 calibration 모델을 작성한 결과 100% 판별 가능한 판별식을 얻었다. 1차 미분된 파장에서 얻은 이 calibration 모델을 이용하여 미지의 종자를 판별한 결과 발아 종자를 96%, 불발아 종자를 95%의 정확도로 판별하였다. 이러한 결과는 앞으로 근적외선을 이용한 종자 선별 기계를 고안하면 종자 선별에 이용할 수 있는 가능성을 보여 주는 것이다.

Keywords

References

  1. Abe, H., T. Kusama, S. Kawano, and M. Iwqmoto. 1995. Nondestructive determination of protein content in a single kernal of wheat and soybean by near infrared spectroscopy, p. 457-461. In: A.M.C. Davies and P. Williams (eds.). Near infrared spectroscopy: The furure waves. NIR Publications, Chichester, UK
  2. Baker, J.E., M.S. Dowell, and J.E. Throne. 1999. Detection of parasitized rice weevils in wheat kernels with near-infrared spectroscopy. Biol. Control 16:88-90 https://doi.org/10.1006/bcon.1999.0733
  3. Basra, A.S. 1995. Seed quality: Basic mechanism and agricultural implication. Food Products Press, an imprint of the Haworth Press Inc,. Binghamton, NY, USA
  4. Dyer, D.J. and P. Feng. 1995. Near infrared applications in the development of genetically altered grains, pp. 490-493. In: A.M.C. Davies and P. Williams (eds.). Near infrared spectroscopy: The furure waves. NIR Publications, Chichester, UK
  5. Gupta, P.C. and V.P. Rana. 1981. Effect of culture filtrate of some seed mycoflora on seed germination of solanaceous crops. Seed Res. 9: 192-193
  6. Lestander, T.A. and P.C. Oden. 2002. Separation of viable and non-viable filled Scot pine seeds by differentiating between drying rates using single seed near infrared transmittance spectroscopy. Seed Sci. Technol. 30:383-392
  7. Martens, H. and T. Naes. 1989. Multivariate calibration. John Wiley, Chester, UK
  8. Min, T.G. 2000. A non-destructive system for detection deteriorated crop seeds by amino acid leakage. J. Kor. Soc. Hort. Sci. 41:576-578
  9. Moore, R.P. 1976. Tetrazolium seed testing developments in North America. J. Seed Technol. 1:17-30
  10. Norris, K.H. and J.R. Hart. 1996. Direct spectrophotometric determination of moisture content of grain and seeds. J. Near Infrared Spectroscopy 4:23-30
  11. Tao, K.J. 1980. Effect of seed treatment of on the conductivity vigor test for corn. Plant Physiol. 65(Suppl.):141 (Abstr.) https://doi.org/10.1104/pp.65.1.141
  12. Taylor, A.G., T.G. Min, and C.A. Mallaber. 1991. Seed coating system to upgrade Brassicaceae seed quality by exploiting sinapine leakage. Seed Sci. Technol. 19:423-434
  13. Tigabu, M. and P.C. Oden. 2002. Multivariate classification of sound and insect-infested seed of a tropical multipurpose tree, Cordia africana, with near infrared reflectance spectroscopy. J. Near Infrared Spectroscopy 10:45-51 https://doi.org/10.1255/jnirs.320
  14. Tigabu, M. and P.C. Oden. 2003. Discrimination of viable and empty seeds of Pinus patula Shiede & Deppe with near-infrared spectroscopy. New Forests 25:163-176 https://doi.org/10.1023/A:1022916615477
  15. Velasco, L., C. Moller, and H.C. Becker. 1999. Estimation of seed weight, oil content, and fatty acid composition in intact single seeds of rapesed (Brassica napus L.) by near-infrared reflectance spectroscopy. Euphytica 106:79-85 https://doi.org/10.1023/A:1003592115110
  16. Woo, Y.A., H.J. Kim, and H. Chung. 1999. Classification of cultivation area of Ginseng radix with NIR and Raman spectroscopy. Analyst 124:1223-1226 https://doi.org/10.1039/a902396h
  17. Yoo, K.C., J.H. Kim, Y.R. Yeoung, and S.H. Lee. 1996a. Effects of fruit maturity and afterripening period on the germination of gourd seeds. J. Kor. Soc. Hort. Sci. 37:197-200
  18. Yoo, K.C., J.H. Kim, Y.R. Yeoung, and S.H. Lee. 1996b. Effect of priming treatment on improving germination of gourd seeds. J. Kor. Soc. Hort. Sci. 37:42-46