TGF-$\beta$1 gene polymorphisms in rheumatoid arthritis

류마티스 관절염에 있어 TGF-$\beta$1 유전자 다형성

Han, Seung-Woo;Kim, Shin-Yoon;Kang, Young-Mo
한승우;김신윤;강영모

  • Published : 20030000

Abstract

Background : Transforming growth factor-$\beta$1 (TGF-$\beta$1) has been shown to promote tissue repair and have immunosuppressive actions, and has been proposed to have a role in rheumatoid arthritis (RA). In this study, we have analyzed the association of five known polymorphisms in TGF-$\beta$1 gene with RA. Methods : We analyzed single nucleotide polymorphisms (SNPs) of TGF-$\beta$1 gene in RA patients(n=110) and controls (n=148). Allele frequencies of SNPs of TGF-$\beta$1 gene at positions -800 G/A, -509 C/T, 869 T/C (L10P), 915 G/C (R25P), and 1628 C/A (T265I) were determined by PCR-RFLP using genomic DNA. Results : There were no statistically significant differences in genotype and allele frequency distributions between cases and controls for -509 C/T or 869 T/C (L10P) polymorphism (p=0.47 and 0.46, respectively). Analysis of combined -509 C/T and 869 T/C genotype showed that the frequency of heterozygote/heterozygote combination was higher in RA partients which was not statistically significant. In the recessive model, the frequency of polymorphic homozygotes at -509 C/T and 869 T/C was lower in male patients with RA (14.3% vs. 31.3%, p=0.16). The frequency of rare alleles at -800 G/A and 915 G/C was very low and was not associated with RA. 1628 C/A (T265I) was not polymorphic in both groups. Conclusion : The present data indicated that the 5 selected SNPs of TGF-$\beta$1 gene were not associated with the susceptibility to RA.

목적 : TGF-$\beta$1은 조직 복구기능 및 면역 조절기능을 통해서 류마티스 관절염에 중요한 역할을 담당하는 다기능의 사이토카인이다. TGF-$\beta$1의 단일핵산다형성(single nucleotide polymorphism, SNP)들과 류마티스 관절염의 관계는 아직 명확히 알려져 있지 않으며 저자들은 TGF-$\beta$1 유전자에 있는 5개 부위의 SNP에 대해 류마티스 관절염의 관련 여부를 조사하였다. 방법 : 경북대학교병원에 내원한 류마티스 관절염 환자 110명과 대조군 148명을 대상으로 하였다. TGF-$\beta$1 유전자에 있는 promoter 부위의 -800 G/A 및 -509 C/T와 엑손 부위의 869 T/C, 915 G/C 및 1628 C/A의 유전자형을 PCR-RFLP 방법으로 분석하였다. 결과 : 류마티스 관절염 환자군과 대조군 간에 -509 C/T과 869 T/C에서 유전자형의 빈도 차이를 비교하였을 때 두군 간에 유의한 차이를 보이지 않았다. -509 C/T와 869 T/C의 유전자형 조합의 빈도는 두 유전자형이 모두 이형접합자인 경우(CT/TC)가 류마티스 관절염 환자군에서 51.8%로 정상대조군의 43.2%보다 다소 높았으나 유의성은 없었다. 환자군과 대조군을 성별에 따라 분류하여 -509 C/T와 869 T/C의 유전자형의 빈도를 조사한 결과 남성에 있어서는 다형성 대립형질의 동형 접합자 빈도가 류마티스 관절염 환자군에서 낮은 경향을 보였으며(14.3% vs. 31.3%, p=0.160) 여성에 있어서는 차이가 전혀 없었다. -800 G/A 및 915 G/C의 유전자형의 빈도는 양군 간에 차이가 없었고, 1628 C/A는 양군 모두에서 다형성이 관찰되지 않았다. 결론 : 본 연구에서 조사한 TGF-$\beta$1 유전자의 단일 핵산다형성들은 한국인 류마티스 관절염의 감수성에 영향을 미치지 못하였다.

Keywords

References

  1. Harris ED Jr. Rheumatoid arthritis: pathophysiology and implications for therapy. N Engl J Med 322: 1277-1289, 1990. https://doi.org/10.1056/NEJM199005033221805
  2. van der Borght A, Geusens P, Raus J, Stinissen P. The autoimmune pathogenesis of rheumatoid arthritis : role of autoreactive T cells and new immunotherapies. Semin Arthritis Rheum 31:160-175, 2001. https://doi.org/10.1053/sarh.2001.27736
  3. Smith JB, Haynes MK. Rheumatoid arthritis: a molecular understanding. Ann Intern Med 136:908-922, 2002. https://doi.org/10.7326/0003-4819-136-12-200206180-00012
  4. van Roon JA, Lafeber FP, Bijlsma JW. Synergistic activity of interleukin-4 and interleukin-10 in suppression of inflammation and joint destruction in rheumatoid arthritis. Arthritis Rheum 44:3-12, 2001. https://doi.org/10.1002/1529-0131(200101)44:1<3::AID-ANR2>3.0.CO;2-U
  5. Isomaki P, Luukkainen R, Toivanen P, Punnonen J. The presence of interleukin-13 in rheumatoid synovium and its antiinflammatory effects on synovial fluid macrophages from patients with rheumatoid arthritis. Arthritis Rheum 39:1693-1702, 1996. https://doi.org/10.1002/art.1780391012
  6. Yin Z, Siegert S, Neure L, Grolms M, Liu L, Eggens U, Radbruch A, Braun J, Sieper J. The elevated ratio of interferon-gamma/interleukin-4 positive T cells found in synovial fluid and synovial membrane of rheumatoid arthritis patients can be changed by interleukin-4 but not by interleukin-10 or transforming growth factor-beta. Rheumatology 38:1058-1067, 1999. https://doi.org/10.1093/rheumatology/38.11.1058
  7. Fabris M, Di PE, D'Elia A, Damante G, Sinigaglia L, Ferraccioli G. Tumor necrosis factor-alpha gene polymorphism in severe and mild-moderate rheumatoid arthritis. J Rheumatol 29:29-33, 2002.
  8. Genevay S, di Giovine FS, Perneger TV, Silvestri T, Stingelin S, Duff G, Guerne PA. Association of interleukin-4 and interleukin-1B gene variants with Larsen score progression in rheumatoid arthritis. Arthritis Rheum 47:303-309, 2002. https://doi.org/10.1002/art.10394
  9. Verhoef CM, van Roon JA, Vianen ME, Bijlsma JW, Lafeber FP. Interleukin-10 (IL-10), not IL-4 or interferon-gamma production, correlates with progression of joint destruction in rheumatoid arthritis. J Rheumatol 28:1960-1966, 2001.
  10. Prud'homme GJ, Piccirillo CA. The inhibitory effects of transforming growth factor-beta 1 (TGF-beta 1) in autoimmune diseases. J Autoimmun 14:23-42, 2000. https://doi.org/10.1006/jaut.1999.0339
  11. Schmitt E, Hoehn P, Huels C, Goedert S, Palm N, Rude E, Germann T. T helper type 1 development of naive CD4+ T cells requires the coordinate action of interleukin-12 and interferon-gamma and is inhibited by transforming growth factor-beta. Eur J Immunol 24:793-798, 1994. https://doi.org/10.1002/eji.1830240403
  12. Schluesener HJ, Lider O. Transforming growth factorsbeta 1 and beta 2 : cytokines with identical immunosuppressive effects and a potential role in the regulation of autoimmune T cell function. J Neuro-Immunol 24:249-258, 1989.
  13. Vinals F, Pouyssegur J. Transforming growth factorbeta 1 (TGF-beta 1) promotes endothelial cell survival during in vitro angiogenesis via an autocrine mechanism implicating TGF-alpha signaling. Mol Cell Biol 21:7218-7230, 2001. https://doi.org/10.1128/MCB.21.21.7218-7230.2001
  14. Chu CQ, Field M, Abney E, Zheng RQ, Allard S, Feldmann M, Maini RN. Transforming growth factorbeta 1 in rheumatoid synovial membrane and cartilage/pannus junction. Clin Exp Immunol 86:380- 386, 1991. https://doi.org/10.1111/j.1365-2249.1991.tb02941.x
  15. Taketazu F, Kato M, Gobl A, Ichijo H, ten Dijke P, Itoh J, Kyogoku M, Ronnelid J, Miyazono K, Heldin CH. Enhanced expression of transforming growth factor-betas and transforming growth factor-beta type II receptor in the synovial tissues of patients with rheumatoid arthritis. Lab Invest 70:620-630, 1994.
  16. Kuruvilla AP, Shah R, Hochwald GM, Liggitt HD, Palladino MA, Thorbecke GJ. Protective effect of transforming growth factor-beta 1 on experimental autoimmune diseases in mice. Proc Natl Acad Sci U S A 88:2918-2921, 1991. https://doi.org/10.1073/pnas.88.7.2918
  17. Fujii D, Brissenden JE, Derynck R, Francke U. Transforming growth factor-beta gene maps to human chromosome 19 long arm and to mouse chromosome 7. Somat Cell Mol Genet 12:281-288, 1986. https://doi.org/10.1007/BF01570787
  18. Ohtsuka T, Yamakage A, Yamazaki S. The polymorphism of transforming growth factor-beta 1 gene in Japanese patients with systemic sclerosis. Br J Dermatol 147:458-463, 2002. https://doi.org/10.1046/j.1365-2133.2002.04947.x
  19. Yamada Y, Miyauchi A, Takagi Y, Tanaka M, Mizuno M, Harada A. Association of the C-509\longrightarrowTpolymorphism, alone of in combination with the T869\longrightarrowC polymorphism, of the transforming growth factor-beta 1 gene with bone mineral density and genetic susceptibility to osteoporosis in Japanese women. J Mol Med 79:149-156, 2001. https://doi.org/10.1007/s001090100190
  20. Yokota M, Ichihara S, Lin TL, Nakashima N, Yamada Y. Association of a T29\longrightarrowC polymorphism of the transforming growth factor-beta 1 gene with genetic susceptibility to myocardial infarction in Japanese. Circulation 101:2783-2787, 2000. https://doi.org/10.1161/01.CIR.101.24.2783
  21. Arnett FC, Edworthy SM, Bloch DA, McShane DJ, Fries JF, Cooper NS, Healey LA, Kaplan SR, Liang MH, Luthra HS. The American Rheumatism Association 1987 revised criteria for the classification of rheumatoid arthritis. Arthritis Rheum 31:315-324, 1988. https://doi.org/10.1002/art.1780310302
  22. Letterio JJ, Roberts AB. Regulation of immune responses by TGF-beta. Annu Rev Immunol 16:137-161, 1998. https://doi.org/10.1146/annurev.immunol.16.1.137
  23. Czarniecki CW, Chiu HH, Wong GH, McCabe SM, Palladino MA. Transforming growth factor-beta 1 modulates the expression of class II histocompatibility antigens on human cells. J Immunol 140:4217-4223, 1988.
  24. Matthes T, Werner-Favre C, Tang H, Zhang X, Kindler V, Zubler RH. Cytokine mRNA expression during an in vitro response of human B lymphocytes : kinetics of B cell tumor necrosis factor-alpha, interleukin (IL)-6, IL-10, and transforming growth factor-beta 1 mRNAs. J Exp Med 178:521-528, 1993. https://doi.org/10.1084/jem.178.2.521
  25. Ranges GE, Figari IS, Espevik T, Palladino MA Jr. Inhibition of cytotoxic T cell development by transforming growth factor-beta and reversal by recombinant tumor necrosis factor-alpha. J Exp Med 166:991-998, 1987. https://doi.org/10.1084/jem.166.4.991
  26. Piccirillo CA, Chang Y, Prud'homme GJ. TGF-beta 1 somatic gene therapy prevents autoimmune disease in nonobese diabetic mice. J Immunol 161:3950- 3956, 1998.
  27. Raz E, Dudler J, Lotz M, Baird SM, Berry CC, Eisenberg RA, Carson DA. Modulation of disease activity in murine systemic lupus erythematosus by cytokine gene delivery. Lupus 4:286-292, 1995. https://doi.org/10.1177/096120339500400409
  28. Piccirillo CA, Prud'homme GJ. Prevention of experimental allergic encephalomyelitis by intramuscular gene transfer with cytokine-encoding plasmid vectors. Hum Gene Ther 10:1915-1922, 1999. https://doi.org/10.1089/10430349950017275
  29. Keen RW, Snieder H, Molloy H, Daniels J, Chiano M, Gibson F, Fairbairn L, Smith P, MacGregor AJ, Gewert D, Spector TD. Evidence of association and linkage disequilibrium between a novel polymorphism in the transforming growth factor-beta 1 gene and hip bone mineral density : a study of female twins. Rheumatology 40:48-54, 2001. https://doi.org/10.1093/rheumatology/40.1.48
  30. Beranek M, Kankova K, Benes P, Izakovicova-Holla L, Znojil V, Hajek D, Vlkova E, Vacha J. Polymorphism R25P in the gene encoding transforming growth factor-beta 1 (TGF-beta 1) is a newly identified risk factor for proliferative diabetic retinopathy. Am J Med Genet 109:278-283, 2002. https://doi.org/10.1002/ajmg.10372
  31. Pulleyn LJ, Newton R, Adcock IM, Barnes PJ. TGFbeta 1 allele association with asthma severity. Hum Genet 109:623-627, 2001. https://doi.org/10.1007/s00439-001-0617-y
  32. Sugiura Y, Niimi T, Sato S, Yoshinouchi T, Banno S, Naniwa T, Maeda H, Shimizu S, Ueda R. Transforming growth factor-beta 1 gene polymorphism in rheumatoid arthritis. Ann Rheum Dis 61:826-828, 2002. https://doi.org/10.1136/ard.61.9.826
  33. Cambien F, Ricard S, Troesch A, Mallet C, Generenaz L, Evans A, Arveiler D, Luc G, Ruidavets JB, Poirier O. Polymorphisms of the transforming growth factorbeta 1 gene in relation to myocardial infarction and blood pressure. Hypertension 28:881-887, 1996. https://doi.org/10.1161/01.HYP.28.5.881
  34. Syrris P, Carter ND, Metcalfe JC, Kemp PR, Grainger DJ, Kaski JC, Crossman DC, Francis SE, Gunn J, Jeffery S, Heathcote K. Transforming growth factorbeta 1 gene polymorphisms and coronary artery disease. Clin Sci 95:659-667, 1998. https://doi.org/10.1042/CS19980154
  35. Kim SJ, Glick A, Sporn MB, Roberts AB. Characterization of the promoter region of the human transforming growth factor-beta 1 gene. J Biol Chem 264:402-408, 1989.
  36. Grainger DJ, Heathcote K, Chiano M, Snieder H, Kemp PR, Metcalfe JC, Carter ND, Spector TD. Genetic control of the circulating concentration of transforming growth factor type beta 1. Hum Mol Genet 8:93-97, 1999. https://doi.org/10.1093/hmg/8.1.93