Down-regulatory Effect of Interleukin-10 Gene Transfection for CXC Chemokines in Colonic Epithelial Cell

대장상피세포에서 Interleukin-10 유전자 전달의 CXC 케모카인에 대한 억제 효과

Lee, Kook-Lae;Kim, Chan-Gyoo;Kim, Byeong-Gwan;Chang, Dong-Kyung;Lee, Dong-Ho;Kim, Joo-Sung;Jung, Hyun-Chae;Lee, Yeon;Park, Jong-Sang;Song, In-Sung
이국래;김찬규;김병관;장동경;이동호;김주성;정현채;이연;박종상;송인성

  • Published : 20030600

Abstract

Background/Aims: Cytokine plays an important role in initiation and continuation of inflammatory bowel disease. However, cytokine protein has some limitation as a therapeutic tool because of low bioavailability, poor pharmacokinetics and chemical instability. Thus, we studied the effect of interleukin 10 (IL-10) gene transfection on murine colon cancer cell line by using non-viral gene carrier. Methods: Therapeutic gene and plasmid was pCAGGS mouse IL-10 and gene carriers were polyethyleneimine (PEI) and 3$\beta$[L-ornithinamide-carbamoyl] cholesterol (O-chol). After IL-10 gene transfection, we measured the level of IL-10 in supernatant of cultured CT-26 cells. The chemokine cytokine-induced neutrophil chemoattractant (KC) and macrophage inflammatory protein (MIP)-2, which were treated with lipopolysaccharide (LPS) or tumor necrosis factor-alpha (TNF-$\alpha$ ), were measured after IL-10 gene transfection. Results: The IL-10 values were increased significantly by using PEI, but not by using O-chol. The KC and MIP-2 values were increased when LPS or TNF-$\alpha$ were treated. When PEI was used, KC and MIP-2 values increased by LPS or TNF-$\alpha$ were decreased. When O-chol was used, the KC values increased by TNF-$\alpha$ were decreased but those treated by LPS were not decreased, and the MIP-2 values were not decreased. Conclusions: After IL-10 gene transfection in colon cancer cell, IL-10 cytokine was efficiently expressed. The increased chemokine values by LPS or TNF-$\alpha$ were suppressed by IL-10 gene transfection, but which was not constant because of carrier efficiency.

목적: 염증성 장질환은 유발이나 지속에 있어 싸이토카인이 중요한 역할을 하는 것이 알려지면서 싸이토카인을 이용한 치료가 활발히 연구되고 있다. 그러나 싸이토카인 단백질을 직접 사용하는 경우 생체 이용률이 낮으며 낮은 약물동력학성과 화학적 불안정성이 문제되고 있으며 이에 싸이토카인 유전자 전달을 이용한 치료가 최근 도입되고 있다. 이에 본 연구에서는 배양된 생쥐의 대장암 세포주에서 비바이러스 유전자 운반체를 이용하여 IL-10 유전자를 전달하였을 때 IL-10이 발현하는지를 확인하고, 동시에 이렇게 전달된 IL-10이 염증성 자극으로 유발된 케모카인을 억제하는지를 알아보고자 하였다. 대상 및 방법: 치료 유전자와 플라즈미드는 pCAGGS mouse IL-10을 이용하고 유전자 운반체는 polyethyleneimine (PEI)과 3$\beta$ [L-ornithinamide-carbamoyl]cholesterol (O-chol)을 이용하였고, 생쥐의 대장암 세포주인CT26 세포를 이용하여 IL-10의 유전자 전달 이후 배양액에서의 IL-10 농도를 측정하였다. 이후 CT-26 세포를 lipopolysaccaride (LPS)나 TNF-$\alpha$ 로 자극한 경우, 케모카인인 KC나 MIP-2의 변화를 측정하였다. IL-10 유전자 전달로 IL-10이 발현된 CT-26 세포를 LPS나 TNF-$\alpha$ 로 처리하여 배양액에서 KC와 MIP-2를 측정, 비교하였다. 결과: PEI를 운반체로 이용한 경우 배양액의 IL-10 농도는 의미 있게 증가하였으나 O-chol을 이용한 경우에는 의미 있게 증가하지 않았다. CT-26 세포를 LPS나 TNF-$\alpha$ 로 처리하여 배양액에서 측정한 KC와 MIP-2는 모두 의미 있게 증가하였다. 이렇게 증가한 KC와 MIP-2는 PEI를 이용한 경우 의미 있게 감소하였으나 O-chol을 사용한 경우엔 MIP-2는 감소하지 않았고 KC는 LPS로 처리한 경우엔 감소하지 않았다. 결론: 생쥐의 대장세포에서 유전자 운반체를 이용한 IL-10 유전자 전달은 효율적으로 발현되었으며 이는 염증성 자극으로 증가된 케모카인을 효과적으로 억제하였으나 유전자 운반체에 따른 차이가 확인되었는데 이는 유전자 운반체의 효율성의 차이로 판단된다.

Keywords

References

  1. D'Haens G, Rutgeerts P. Medical therapy for Crohn's disease. Curr Opin Gastroenterol 1998;14:306-311 https://doi.org/10.1097/00001574-199807000-00006
  2. van Deventer SJ, Elson CO, Fedorak RN. Multiple doses of intravenous interleukin 10 in steroid-refractory Crohn's disease. Gastroenterology 1997;113:383-389 https://doi.org/10.1053/gast.1997.v113.pm9247454
  3. Fedorak RN, Gangl A, Elson CO, et al. Safety, tolerance, and activity of multiple doses of subcutaneous recombinant human interleukin 10(rHuIL-10) in patients with mild to moderate active Crohn's disease. Gut 1997;41(suppl 3):16A
  4. D'Haens G, van Deventer S, van Hogezand R, et al. Endoscopic and histologic healing with infliximab anti-tumor necrosis factor antibodies in Crohn's disease: A European multicenter trial. Gastroenterology 1999;116:1029-1034 https://doi.org/10.1016/S0016-5085(99)70005-3
  5. Kirschner BS. Safety of azathioprine and 6-mercaptopurine in pediatric patients with inflammatory disease. Gastroenterology 1998;115:813-821 https://doi.org/10.1016/S0016-5085(98)70251-3
  6. Rogy MA, Beinhauer BG, Reinisch W, Huang L, Pokieser P. Transfer of interleukin 4 and interleukin 10 in patients with severe inflammatory bowel disease of the rectum. Hum Gene Ther 2000;11:1731-1741 https://doi.org/10.1089/10430340050111386
  7. Dwinell MB, Eckmann L, Leopard JD, Varki NM, Kagnoff MF. Chemokine receptor expression by human intestinal epithelial cells. Gastroenterology 1999;117:359-367 https://doi.org/10.1053/gast.1999.0029900359
  8. Remick DG, Green LB, Newcomb DE, Garg SJ, Bolgos GL, Call DR. CXC chemokine redundancy ensures neutrophil recruitment during acute inflammation. Am J Pathol 2001;159:1149-1157 https://doi.org/10.1016/S0002-9440(10)61791-9
  9. Pender SL, Breese EJ, Gunther U, et al. Suppression of T-cell-mediated injury in human gut by interleukin 10: Role of matrix metalloproteinases. Gastroenterology 1999; 115:573-583
  10. Powrie F, Leach MW, Mauze S, Menon S, Caddle LB, Coffman RL. Inhibition of Th1 responses prevents inflammatory bowel disease in scid mice reconstituted with CD45RBhi CD4+ T cells. Immunity 1994;1:553-562 https://doi.org/10.1016/1074-7613(94)90045-0
  11. Herfarth HH, Mohanty SP, Rath HC, Tonkonogy S, Sartor RB. Interleukin 10 suppresses experimental chronic, granulomatous inflammation induced by bacterial cell wall polymers. Gut 1996;39:836-845 https://doi.org/10.1136/gut.39.6.836
  12. Jeschke MG, Herndon DN, Baer W, Barrow RE, Jauch KW. Possibilities of non-viral gene transfer to improve cutaneous wound healing. Curr Gene Ther 2001;1:267-278 https://doi.org/10.2174/1566523013348571
  13. Vasiliauskas EA, Kam LY, Abreu-martin MT, et al. An open-label pilot study of low-dose thalidomide in chronically active, steroid-dependent Crohn's disease. Gastroenterology 1999;117:1278-1287 https://doi.org/10.1016/S0016-5085(99)70277-5
  14. Ehrenpreis ED, Kane SV, Cohen LB, Cohen RD, Hanauer SB. Thalidomide therapy for patients with refractory Crohn's disease: an open-label study. Gastroenterology 1999;117:1271-1277 https://doi.org/10.1016/S0016-5085(99)70276-3
  15. Schreiber S, Heinig T, Thiele HG, Raedler A. Immunoregulatory role of interleukin 10 in patients with inflammatory bowel disease. Gastroenterology 1995;108:1434-1444 https://doi.org/10.1016/0016-5085(95)90692-4
  16. MacDonald TT, Monteleone G, Pender SL. Recent developments in the immunology of inflammatory bowel disease. Scand J Immunol 2000;51:2-9 https://doi.org/10.1046/j.1365-3083.2000.00658.x
  17. Baldassano RN. Anti-TNF therapies have eliminated the need for steroids in pediatric Crohn's disease: Pro. Why use steroids if safer therapies are available? Infla Bowel Dis 2001;7:338-341
  18. Wirtz S, Galle PR, Neurath MF. Efficient gene delivery to the inflamed colon by local administration of recombinant adenoviruses with normal or modified fibre structure. Gut 1999;44:800-807 https://doi.org/10.1136/gut.44.6.800
  19. Wu CH, Shen L, Wu GY. Gene therapy applications in gastroenterology and hepatology. Can J Gastroenterol 2000;14:57-61 https://doi.org/10.1155/2000/959231
  20. Hogaboam CM, Vallance BA, Kumar A, et al. Therapeutic effect of interleukin-4 gene transfer in experimental inflammatory bowel disease. J Clin Invest 1997;100: 2766-2776 https://doi.org/10.1172/JCI119823
  21. Pouton CW, Seymour LW. Key issues in non-viral gene delivery. Adv Drug Delivery Rev 1998;34:3-19 https://doi.org/10.1016/S0169-409X(98)00048-9
  22. Steidler L, Hans W, Schotte L, et al. Treatment of murine colitis by Lactococcus lactis secreting interleukin 10. Science 2000;289:1352-1355 https://doi.org/10.1126/science.289.5483.1352
  23. Wang J, Guo X, Xu Y, Barron L, Szoka FC. Jr. Synthesis and characterization of long chain alkyl acyl carnitine esters. Potentially biodegradable cationic lipids for use in gene delivery. J Med Chem 1998;41:2207-2215
  24. Lee MJ, Cho SS, You JR, et al. Intraperitoneal gene delivery mediated by a novel cationic liposome in a peritoneal disseminated ovarian cancer model. Gene Ther 2002;9: 859-866 https://doi.org/10.1038/sj.gt.3301704
  25. Tang F, Hughes JA. Synthesis of a single-tailed cationic lipid and investigation of its transfection. J Controlled Release 1999;62:345-358 https://doi.org/10.1016/S0168-3659(99)00158-3
  26. Choi JS, Lee EJ, Jang HS, Park JS. New cationic liposomes for gene transfer into mammalian cells with high efficiency and low toxicity. Bioconjugate Chem 2001;12:108-113 https://doi.org/10.1021/bc000081o
  27. Koh JJ, Ko KS, Park JS, et al. IL-10 plasmid DNA delivery in NOD mice for the prevention of autoimmune pancreatic beta cell destruction. J Korean Soc of Endocrinol 2000;15:262-271
  28. Shibahara T, Wilcox JN, Couse T, Madara JL. Characterization of epithelial chemoattractants for human intestinal intraepithelial lymphocytes. Gastroenterology 2001;120:60-70 https://doi.org/10.1053/gast.2001.20904
  29. Baggiolini M, Dewald B, Moser B. Human chemokines: an update. Annu Rev Immunol 1997;15:675-705 https://doi.org/10.1146/annurev.immunol.15.1.675
  30. Dwinell MB, Lügering N, Eckmann L, Kagnoff MF. Regulated production of interferon-inducible T-cell chemoattractants by human intestinal epithelial cells. Gastroenterology 2001; 120:49-59 https://doi.org/10.1053/gast.2001.20914
  31. Yang SK, Eckmann L, Panja A, Kagnoff MF. Differential and regulated expression of C-X-C, C-C, and C-chemokines by human colon epithelial cells. Gastroenterology 1997; 113:1214-1223 https://doi.org/10.1053/gast.1997.v113.pm9322516
  32. Lacroix-Lamade S, Mancassola R, Naciri M, Laurent F. Role of gamma interferon in chemokine expression in the ileum of mice and a murine intestinal epithelial cell line after Cryptosporidium parvum infection. Infect Immun 2002;70:2090-2099 https://doi.org/10.1128/IAI.70.4.2090-2099.2002
  33. Kopydlowski KM, Salkowski CA, Cody MJ, et al. Regulation of macrophage chemokine expression by lipopolysaccharide in vitro and in vivo. J Immunol 1999;163:1537-1544
  34. Tessier PA, Naccache PH, Clark-Lewis I, Gladue RP, Neote KS, McColl SR. Chemokine networks in vivo: involvement of C-X-C and C-C chemokines in neutrophil extravasation in vivo in response to TNF-alpha. J Immunol 1997;159: 3595-3602
  35. Schuerer-Maly CC, Eckmann L, Kagnoff MF, Falco MT, Maly FE. Colonic epithelial cell lines as a source of interleukin-8; stimulation by inflammatory cytokines and bacterial lipopolysaccharide. Immunology 1994;81:85-91
  36. Schmid RM, Weidenbach H, Liptay S, Adler G. Direct gene transfer into the colon using a double-baloon catheter. Endoscopy 1997;29:39-43 https://doi.org/10.1055/s-2007-1004060