The Distribution of the Periacetabular Strain After THA in Relation to Preservation or Removal of the Subchondral Bone and the Change in Hip Joint Position and the Amount of the Load -Biomechanical Analysis using Cadaver Pelves and Finite Element Model-

인공고관절 치환술 후 연골하골 보존 여부 및 고관절부 자세와 부하 변화에 따른 비구부 변형 분포 양상 -인체 골반골 및 유한요소분석을 이용한 생역학적 분석-

Ha, Chul-Won;Han, Kye-Young;Kim, Young-Min
하철원;한계영;김영민

  • Published : 20030000

Abstract

Purpose: The purpose of this study is to get more reliable biomechanical data on the changes in the periprosthetic strain after total hip arthroplasty on cadaveric pelvic ring, especially around the acetabular cup and to evaluate the strain patterns by performing finite element study. Materials and Methods: We have done bilateral cementless total hip arthroplasty on cadaver pelvic ring. One acetabular subchondral bone was preserved and the other acetabular subchodral bone was removed during total hip arthroplasty. We evaluated the patterns of strain at periacetabular area by compressive load test using strain gauge. The 3-dimensional finite element model was constructed, and computer-simulated load tests were performed. Results: In case of preserving subchondral bone, strain distribution was more concentrated on the posterior and posterosuperior wall. In case of removing subchondral bone, strain distribution was more wide and strain values were larger, and the anterior portion showed maximal strain. The maximal strain values were below 150 microstrain by 25 kg load in single limb stance, but it was between 300-700 microstrain by 45 kg and 65 kg. The finite element analysis revealed the similar strain values obtained from the cadaveric load test, and the same change in the pattern of strain distribution according to the preservation or removal of the subchondral bone. Conclusion: In cementless total hip arthroplasty, early partial weight bearing and preservation of subchondral bone seems to be preferable to preserve physiologic pattern of the strain distribution and to reduce the values of maximal strain.

목 적 : 양측 골반골 전체를 포함한 시체 골반환을 사용하여 무시멘트형 비구부 인공 고관절 치환술을 시행 후 비구 주변부 변형에 관한 생역학적 자료를 얻고, 골반골 유한요소 모델을 이용하여 자세한 변형 양상을 파악하고자 하였다. 재료 및 방법 : 시체에서 골반환을 채득한 후, 한쪽 비구는 연골하골을 보존하고, 반대쪽은 연골하골을 제거하여 인공 고관절 치환술을 시행하였다. 인체 골반골에 변형 게이지를 부착한 후 각종 부하를 가하여 비구 주변부 변형의 분포 양상을 측정하였고, 유한요소분석 모델은 골반골 3차원 모델을 구축한 후, 컴퓨터를 이용한 부하 실험을 시행하였다. 결 과 : 연골하골을 보존한 경우에는 변형 분포가 전방벽 및 상부벽에 집중되고 연골하골이 없는 경우는 좀 더 넓은 부위로 분포하고, 변형값이 커졌으며, 특히 전방벽 부위에 가장 큰 변형이 나타났다. 25 kg의 부하에 150 microstrain 이하의 최대 변형을 보였고, 45-65 kg의 부하엔 300-700 microstrain의 분포를 보였다. 유한요소 모델을 통한 부하 실험의 결과, 비구 주변부 변형 값은 인체골에 직접 시행한 부하검사 결과와 비슷하였고 연골하골의 보존 여부에 따른 비구 주변부 변형 분포는 실제 골에서 측정한 것과 같은 양상의 차이가 있었다. 결 론 : 무시멘트형 인공 고관절 치환술시에 연골하골을 보존하는 것과 부분 체중 부하를 허용하는 것이 비구부의 변형 분포가 정상적인 형태를 보였으며 최대 변형값도 줄일 수 있었다.

Keywords

References

  1. Afoke NYP, Byers PD and Hutton WC: Contact pressures in the human hip joint. J Bone Joint Surg, 69-B: 536-541, 1987.
  2. Bay BK, Hamel AJ, Olson SA and Sharkey NA: Statically equivalent load and support conditions produce different hip joint contact pressures and periacetabular strains. J Biomechanics, 30(2): 193-196, 1997. https://doi.org/10.1016/S0021-9290(96)00120-0
  3. Brown TD and Shaw DT: In vitro contact stress distributions in the natural human hip. J Biomechanics, 16(6): 373-384, 1983. https://doi.org/10.1016/0021-9290(83)90071-4
  4. Carter DR, Vasu R and Harris WH: Stress distributions in the acetabular region -II. Effects of cement thickness and metal backing of the total hip acetabular component. J Biomechanics, 15(3): 165-170, 1982. https://doi.org/10.1016/0021-9290(82)90248-2
  5. Crowninshield RD, Brand RA and Pedersen DR: A stress analysis of acetabular reconstruction in protrusio acetabuli. J Bone Joint Surg, 65-A: 495-499, 1983.
  6. Dalstra M and Huiskes R: Load transfer across the pelvic bone. J Biomechanics, 28(6): 715-724, 1995. https://doi.org/10.1016/0021-9290(94)00125-N
  7. Engh CA, Massin P and Suthers KE: Roentgenographic assessment of the biologic fixation of porous-surfaced femoral components. Clin Orthop, 257: 107-128, 1990.
  8. Finlay JB, Bourne RB, Landsberg RP and Andreae P: Pelvic stresses in vitro -I. Malsizing of endoprostheses. J Biomechanics, 19(9): 703-714, 1986. https://doi.org/10.1016/0021-9290(86)90194-6
  9. Finlay JB, Bourne RB, Landsberg RP and Andreae P: Pelvic stresses in vitro -II. A study of the efficacy of metal-backed acetabular prostheses. J Biomechanics, 19(9): 715-725, 1986. https://doi.org/10.1016/0021-9290(86)90195-8
  10. Goel VX, Villiappan S and Svenson NL: Stresses in the normal pelvis. Comput Biol Med, 8: 91-104, 1978. https://doi.org/10.1016/0010-4825(78)90001-X
  11. Lionberger D, Walker PS and Granholm J: Effects of prosthetic acetabular replacement on strains in the pelvis. J Orthop Res, 3(3): 372-379, 1985. https://doi.org/10.1002/jor.1100030314
  12. Massin P, Vandenbussche E, Landjerit B and Augereau B: Experimental study of periacetabular deformations before and after implantation of hip prostheses. J Biomechanics, 29(1): 53-61, 1996. https://doi.org/10.1016/0021-9290(95)00022-4
  13. Mizrahi J, Solomon L, Kaufman B and Duggan T. O’D: An experimental method for investigating load distribution in the cadaveric human hip. J Bone Joint Surg, 63B(4): 610-613, 1981.
  14. Oh I and Harris W: Proximal strain distribution in the loaded femur. J Bone Joint Surg, 60-A: 75-85, 1978.
  15. Pederson DR, Crowninshield RD, Brand RA and Johnston RC: An axisymmetric model of acetabular components in total hip arthroplasty. J Biomechanics, 15: 305-315, 1982. https://doi.org/10.1016/0021-9290(82)90176-2
  16. Qin Y, Mcleod K, Guilak F, Chiang F and Rubin C: Correlation of bony ingrowth to the distribution of stress and strain parameters surrounding a porous-coated implant. J Orthop. Res, 14: 862-870, 1996. https://doi.org/10.1002/jor.1100140604
  17. Ries MD and Harbaugh M: Acetabular strains produced by oversized press fit cups. Clin Orthop, 334: 276-281, 1997.
  18. Ries M, Pugh J, Au JC, Gurtowski J and Dee R: Cortical pelvic strains with varying size hemiarthroplasty in vitro. J Biomechanics, 22: 775-780, 1989. https://doi.org/10.1016/0021-9290(89)90060-2
  19. Rubin C and Mcleod KJ: Promotion of bony ingrowth by frequency-specific, low-amplitude mechanical strain. Clin Orthop, 298: 165-174, 1994.
  20. Rubin C, Gross T, Qin Y, Fritton S, Guilak F and Mcleod K: Differentiation of the bone-tissue remodeling response to axial and torsional loading in the turkey ulna. J Bone Joint Surg, 78-A: 1523-1533, 1996.
  21. Sumner DR and Galante JO: Determinants of stress shielding. Design versus materials versus interface. Clin Orthop, 274: 203-212, 1992.
  22. Vasu R, Carter DR and Harris WH: Stress distributions in the acetabular region -I. Before and after total joint replacement. J Biomechanics, 15(3): 155-164, 1982. https://doi.org/10.1016/0021-9290(82)90247-0
  23. Yoshioka Y and Shiba R: A study on the stress analysis of the pelvis by means of the three-dimensional photoelastic experiments(author’s translation). Nippon Seikeigeka Gakkai Zasshi, 55(2): 209-222, 1981.