DOI QR코드

DOI QR Code

Biological Control of Blue Mold of Apples by Bacillus spp. and Serratia marcescens

Bacillus spp. 및 Serratia marcescens에 의한 사과 푸른곰팡이병의 생물적 방제

  • Kim, Yong-Ki (Plant Pathology Division, National Institute of Agricultural Science and Technology) ;
  • Lee, Seong-Don (Plant Pathology Division, National Institute of Agricultural Science and Technology) ;
  • Ryu, Jae-Gee (Research Coordination Division, Research Management Bureau) ;
  • Ryu, Jae-Dang (Plant Pathology Division, National Institute of Agricultural Science and Technology)
  • 김용기 (농업과학기술원 식물병리과) ;
  • 이승돈 (농업과학기술원 식물병리과) ;
  • 류재기 (농촌진흥청 연구관리국 연구운영과) ;
  • 류재당 (농업과학기술원 식물병리과)
  • Published : 2003.12.01

Abstract

The 1080 epiphytic bacteria obtained from 370 samples of pome and stone fruits including apple, pear, peach, grape, apricot and Chinese quince were screened for antagonistic activity against postharvest pathogens, Penicillium expansum, Alternaria alternata and Botrytis cinerea. Among tested antagonistic bacteria, eight bacterial isolates inhibited mycelial growth of the postharvest pathogens and were identified as Bacillus amyloliquefaciens (three strains), B. megaterium, B. subtilis var. gladioli, B. licheniformis, B. pumilus and Serratia marcescens based on biochemical characteristics and utility of carbon and nitrogen compounds (Biolog system). Eight carbohydrates were evaluated for their effect on mycelial growth and germination of the postharvest pathogen, P. expansum to select nutrients for enhancing bio-control efficacy. The growth of four selected antagonists, B. amyloliquefaciens P43-2, B. amyloliquefaciens A71-2, B. licheniformis P94-1, and S. marcescens P76-9 were also tested. As a result, 1% glucose (w/v) strongly stimulated growth of the antagonists, suppressed mycelial growth of the postharvest pathogen, and had a little comparatively stimulatory effect on germination of the the postharvest pathogen. It was confirmed that the addition of 1% glucose (w/v) greatly enhanced biocontrol effect of B. amyloliquefaciens P43-2, B. licheniformis P94-1, and S. marcescens P76-9. Application of B. amyloliquefaciens P43-2, B. licheniformis P94-1, and S. marcescens P76-9 with the addition of 1% glucose (w/v) increased the control efficacy up to 48%, 46%, 14% compared with those of the antagonists without glucose, respectively. When the antagonists were applied to control postharvest disease caused by P. expansum in apple wounds, the population of B. amyloliquefaciens P43-2 and B. licheniformis P94-1 increased until 4 days after inoculation (DAI) of the antagonists and then decreased from 10 DAI. Meanwhile the population of S. marcescens P76-9 decreased at early stage (4 DAI), but increased from 7 DAI, and finally maintained constantly until 10 DAI in apple wounds.

사과 푸른곰팡이병을 방제하기 위하여 사과, 배, 복숭아 등 370점의 과일을 채취하여 과일표면으로부터 세균 1,080균주를 분리하였다. 분리한 1,080균주를 공시 하여 사과 저장병을 일으키는 Penicillium expansum, Alternaria alternata 그리고 Botrytis cinerea을 대상으로 항균활성 및 병 진전억제효과를 검정하여 8종의 길항세균을 선발하였다. 이 들 길항세균에 대한 세균학적 특성과 Biolog system에 의한 영양원 이용성을 조사한 결과 Bacillus amyloliquefaciens가 2균주, B. megaterium, B. subtilis var. gladioli, B. licheniformis, B. pumilus 및 Serratia marcescens로 동정하였다. Glucose, mannose, starch 등 8종의 탄소원을 공시하여 병원균의 생장 및 길항균의 중식에 미치는 영향을 조사한 결과, 병원균의 증식을 억제하고 길항균의 증식을 촉진하는 영양원으로 glucose가 선발되었다. 길항균의 처리효과를 높이기 위하여 길항균 현탁액에 glucose를 1% 첨가하여 사과에 처리한 다음 푸른곰팡이 병균을 $10^5$포자/ml 농도로 처리하였을 때, 병 진전억제효과가 S. marsecens P76-9처리에서 48%, B. amyloliquefaciens P43-2 처리에서 46% 그리고 B. licheniformis P94-1 처리에서 14% 증가되었다. 사과표면의 상처부위에서 처리한 길항균의 밀도변동에 있어서는 Bacillus 속 세균인 B. amyloliquefaciens P43-2과 B. licheniformis P94-1는 처리 후 7일까지 밀도가 증가하다가 처리 후 10일부터는 감소되는 경향이었으며, S. marsecens P76-9는 초기(처리 후 4일)에는 밀도가 감소되다가 처리 후 7일부터 증가되어 처리 후 7일까지도 일정한 수준으로 밀도가 유지되었다.

Keywords

References

  1. Aharoni, Y., Fallik, E., Copel, A, Gil, M., Grinberg, S. and Klein, J. D. 1997. Sodium bicarbonate reduce postharevst decay development on melons. Postharvest Biology and Technology 10: 201-206 https://doi.org/10.1016/S0925-5214(97)01412-9
  2. Conway, W S., Sarns, C. E., McGuire, R. G. and Kelman, A 1992. Calcium treatment of apples and potatoes to reduce postharvest decay. Plant Dis. 76: 329-334 https://doi.org/10.1094/PD-76-0329
  3. Droby, S., Wisniewski, M. E., Cohen, L., Weiss, B., Touitou, D., Eilam, Y. and Chalutz, E. 1997. Influence of $CaCl_2$ on Penicillium digitatum, grapefruit peel tissue, and biocontrol activity of Pichia guilliennondii. Phytopathology 87: 310-315 https://doi.org/10.1094/PHYTO.1997.87.3.310
  4. EI-Ghaouth, A, Smilanick, J. L., Ippolito, A, Wisniewski, M. and Wilson, C. L. 2000a. Application of Candida saitoana and glycolchitosan for the control of postharvest diseases of apple and citrus fruit under semi-commercial conditions. Plant Dis. 84: 243-248 https://doi.org/10.1094/PDIS.2000.84.3.243
  5. EI-Ghaouth, A, Smilanick, J. L. and Wilson, C. 2000b. Enhancement of the performance of Candida saitoana by the addition of glycolchitosan for the control of postharvest decay of apple and citrus fruit. Postharvest Biology and Technology 19: 103-110 https://doi.org/10.1016/S0925-5214(00)00076-4
  6. Forbes-Smith, M. 1999. Induced resistance for the biological control of postharvest diseases of fruit and vegetables. Food Australia 51: 382-385
  7. Gullino, M. L., Benzi, D., Aloi, C, testoni, A and Garibaldi, A 1992. Biological control of Botrytis rot of apple. Proc. $10^{th}$ Int. Botrytis Symposium: 197-200
  8. Hong, C. X., Michailides, T. J. and Holtz, B. A. 1998. Effects of wounding, inoculum density, and biological control agents on postharvest brown rot of stone fruits. Plant Dis. 82: 1210-1216 https://doi.org/10.1094/PDIS.1998.82.11.1210
  9. Huang, Y., Wild, B. L. and Morris, S. C. 1992. Postharvest biological control of Penicillium digitatum decay on citrus fruit by Bacillus pumilus. Ann. Appl. Biol. 120: 367-372 https://doi.org/10.1111/j.1744-7348.1992.tb03433.x
  10. Janisiewicz, W J. 1988. Biocontrol of postharvest diseases of apples with antagonist mixtures. Phytopathology 78: 194-198 https://doi.org/10.1094/Phyto-78-194
  11. Janisiewicz, W J. 1994. Enhancement of biocontrol of blue mold with the nutrient analog 2-deoxy-D-glucose on apples and pears. Applied and Environmental Microbiology 60: 2671-2676
  12. Janisiewicz, W J. and Bors, B. 1995. Development of a microbial community of bacterial and yeast antagonists to control wound-invading postharvest pathogens of fruits. Applied and Environmental Microbiology 61: 3261-3267
  13. Janisiewicz, W J., Peterson, D. L. and Rors, R. 1994. Control of storage decay of apples with Sporobolomyces roseus. Plant Dis. 78: 466-470 https://doi.org/10.1094/PD-78-0466
  14. Janisiewicz, W J., Usall, J. and Bors, B. 1992. Nutritional enhancement of biocontrol of blue mold on apples. Phytopathology 82: 1364-1370 https://doi.org/10.1094/Phyto-82-1364
  15. Yong-Ki Kim, Ryung-Hee Kim, Jae-Dang Ryu, Sang-Yeob Lee and Yong-Chul Choi. 1998. Occurrence and control of postharvest diseases of apple. The Korean Journal of Pesticide Science 2(2): 83-89
  16. Yong-Ki Kim. 1995. Biological control of Phytophthora blight of red pepper by antagonistic Bacillus polymyxa AC-I. Ph. D. dissertation, Seoul National University, Suwon. 78pp
  17. Leibinger, W, Breuker, B., Halm, M. and Mendgen, K. 1997. Control of postharvest pathogens and colonization of the apple surface by antagonistic microorganisms in the field. Phytopathology 87: 1103-1110 https://doi.org/10.1094/PHYTO.1997.87.11.1103
  18. Lisansky, S. 1999. Biopesticide. $5^{th}$ edition. Volume 2. CPL Scientific Publishing Service, Newbury, U. K. 482pp
  19. McLaughlin, R. J., Wisniewski, M. E., Wilson, C. L. and Chalutz, E. 1990. Effect of inoculum concentration and salt solutions on biological control of postharvest diseases of apple with Candida sp. Phytopathology 80: 456-461 https://doi.org/10.1094/Phyto-80-456
  20. Nunes, C, Usall, J., Teixido, N. and Vinas, I. 2001. Biological control of postharvest pear diseases using a bacterium, Pantoea agglomerans CPA-2. International Journal of Food Microbiology 70: 53-56 https://doi.org/10.1016/S0168-1605(01)00523-2
  21. Pusey, P. L. and Wilson, C. L. 1984. Postharvest biological control of stone fruit brown rot by Bacillus subtilis. Plant Dis. 68: 753-756 https://doi.org/10.1094/PD-69-753
  22. Sholberg, P. L., Marchi, A. and Bechard, J. 1995. Biocontrol of postharvest diseases of apple using Bacillus spp. isolated from stored apples. Can. J. Microbiol. 41: 247-252 https://doi.org/10.1139/m95-034
  23. Stevens, C., Khan, V. A., Lu, J. Y., Pusey, P. L., Igwegbe, K., Mafalo, Y, Chalutz, E. and Droby, S. 1997. Integration of ultraviolet(UV-C) light with yeast treatment for control of postharvest storage rots of fruits and vegetables. Biological Control 10: 98-103 https://doi.org/10.1006/bcon.1997.0551
  24. Tanaka, 1990. Market disease guide book. Japan Plant Protection Association. 225pp
  25. Usall, J., Teixido, N., Fons, E., Torres, R., de Eribe, X. O. and Vinas, I. 2001. Pilot tests of Candida sake(CPA-1) applications to control postharvest blue mold on apple fruit. Postharvest Biology and Technology 21: 147-156 https://doi.org/10.1016/S0925-5214(00)00131-9
  26. Usall, J., Teixido, N., Fons, E. and Vinas, I. 2000. Biological control of blue mould on apple by a strain of Candida sake under several controlled atmosphere conditions. International Journal of Food Microbiology 58: 83-92 https://doi.org/10.1016/S0168-1605(00)00285-3