The comparison of intra-abdominal fat distance (I-A Fat Distance) and visceral adipose tissue area (VAT) or visceral fat to skeletal muscle area ratio (VMR) measured by computed tomography (CT)

컴퓨터단층촬영으로 측정한 복강내 지방조직 길이와 내장지방 면적, 내장지방/피하지방 면적비 및 내장지방/골격근 면적비와의 비교

Kim, Soo-Kyung;Kim, Se-Hwa;Rhee, Yu-Mie;Choi, Seung-Hee;Cho, You-Lee;Ahn, Chul-Woo;Cha, Bong-Soo;Lim, Sung-Kil;Kim, Kyung-Rae;Lee, Hyun-Chul;Huh, Kap-Bum
김수경;김세화;이유미;최성희;조유리;안철우;차봉수;임승길;김경래;이현철;허갑범

  • Published : 20030000

Abstract

Background : Visceral fat accumulation plays a major role in metabolic syndrome and increased cardiovascular risks. Clinical evaluation of visceral fat by CT is not widely used because of high cost, low availability, and ionizing radiation risk, and alternative means are required. To assess the usefulness of ultrasound measurement of I-A fat distance for the evaluation of visceral obesity, we compared several length-associated parameters (I-A fat distance, I-A fat distance to thigh muscle length ratio, and I-A fat distance to abdominal subcutaneous fat length ratio) with area-associated parameters (VAT, visceral fat to subcutaneous fat area ratio [VSR] and VMR) measured by CT. Methods : We evaluated 65 patients with type 2 diabetes (34 men and 31 postmenopausal women). CT scans were obtained at the L4-5 level and the mid-portion between greater trochanter and upper margin patella. I-A fat distance was defined as the distance between the internal face of rectus muscle and the anterior wall of the aorta. Also ultrasonography for measurement of I-A fat distance was performed in 20 men of subjects. Results : Of the various parameters examined, I-A fat distance was most closely correlated with the VAT (r=0.76, p<0.001) and VMR (r=0.71, p<0.001) but not VSR (r=0.18, p=0.22). This distance positively correlated with serum triglyceride and free fatty acids in men (r=0.56 and r=0.59, p<0.05, respectively), and with uric acid (r=0.70, p<0.05), fasting insulin levels (r=0.70, p<0.001), insulin resistance index by HOMA (r=0.69, p<0.001), systolic blood pressure (SBP) (r=0.73, p<0.05), and diastolic blood pressure (DBP) (r=0.85, p<0.001) in women. When the clinical and laboratory data was considered by tertiles of I-A distance, serum uric acid, fasting insulin levels, insulin resistance index (HOMA), BMI, waist or hip circumference, SBP, and DBP were significantly higher in the top tertile, but not WHR. I-A fat distance measured by ultrasonography significantly correlated with VAT, VSR, and VMR (r=0.79, r=0.71, and r=0.79, p<0.05, respectively). Conclusion : These results suggest that 1) I-A fat distance may substitute for the VAT in assessment of visceral fat content and may be relatively good parameter indicative of visceral obesity and/or insulin resistance, and 2) several parameters (e.g., VAT, VSR, and VMR) related with visceral fat by CT may be replaced with ultrasonographic I-A fat distance.

배경 : 내장지방의 과잉 축적은 대사 증후군 및 심혈관계 질환 등의 발생에 중요한 역할을 한다. 이런 내장지방을 평가하는데 컴퓨터단층촬영이 좋은 방법으로 알려져 있으나, 고가이며, 방사선에 노출되며 그리고 쉽게 임상에서 이용하기 어렵다는 점에서 널리 사용되기에는 많은 제한점을 갖고 있다. 따라서 비교적 손쉽게 사용할 수 있는 비침습적인 평가 방법이 요구되고 있다. 본 연구에서는 내장비만을 평가하는데 복부 초음파의 유용성을 평가하기에 앞서, 컴퓨터단층촬영에서 얻어진 길이와 관련된 지표들(복강내 지방조직 길이 등)과 면적과 관련된 지표들(내장지방 면적 등)을 비교하여, 초음파에 의한 내장지방 두께 측정의 근거를 마련하고자 하였다. 대상 및 방법 : 제 2형 당뇨병으로 연세의대 세브란스 병원을 방문한 65명을 대상으로 하였다. 모든 환자에서 체질량지수, 허리 둘레, 엉덩이 둘레, 수축기 및 이완기 혈압 등을 측정하였고, 공복 후 혈청 총 콜레스테롤,중성지방, 고밀도지단백 콜레스테롤, 요산, 유리지방산 및 인슐린 농도를 측정하였다. 또한 모든 환자에서 요추4-5와 대퇴 중간수준에서 컴퓨터단층촬영을 시행하여, 각각 내장지방, 복부 피하지방, 골격근 면적을 측정하였고, 복강내 지방조직 길이, 복벽 피하조직 길이 등도 측정하였다. 20명의 환자에서는 내장지방 측정을 위해 제1 cm 위에서 복부 초음파를 시행하였고, 컴퓨터단층촬영에서와 같은 방법으로 복강내 지방조직 길이 및 복벽피하조직 길이를 측정하였다. 결과 : 컴퓨터단층촬영으로 측정한 여러 가지 지표들중 복강내 지방조직 길이는 내장지방 면적과 내장지방/골격근 면적비와는 비교적 좋은 상관관계를 보였으나(r=0.76, r=0.71, p<0.001, respectively), 내장지방/피하지방 면적비와는 유의한 상관성을 보이지 않았다(r=0.18).복강내 지방조직 길이의 경우 남자 환자에서는 혈청 중성지방(r=0.56, p<0.05), 유리지방산 농도(r=0.59, p<0.05)와 관련이 있었으며, 여자 환자에서는 요산(r=0.70, p<0.05),수축기혈압(r=0.73, p<0.05), 이완기혈압(r=0.85, p<0.001),혈청 인슐린 농도(r=0.70, p<0.001), HOMA-IR (r=0.69,p<0.001) 등과 상관관계를 보였다. 복강내 지방조직 길이를 삼분위로 분류하였을 때, 상위 삼분위군에서 요산,수축기혈압, 이완기혈압, 혈청 인슐린 농도 및 HOMAIR등이 유의하게 높았다(p<0.05, respectively). 초음파로 측정한 복강내 지방조직 길이는 내장지방 면적, 내장지방/피하지방 면적비 및 내장지방/골격근 면적비 모두와 유의한 상관관계를 보였다(r=0.79, r=0.71, and r=0.79, p<0.05, respectively). 결론 : 복강내 지방조직 길이는 내장비만을 평가하는데 내장지방 면적 등을 대신할 수 있고, 초음파를 이용한 내장지방 측정은 컴퓨터단층촬영을 대체할 수 있을 것으로 생각된다. 따라서 정확한 내장지방 측정방법만 모색한다면, 초음파기는 내장비만을 간편하게 측정할 수 있을 뿐 아니라, 이를 개선하기 위한 여러 가지 치료 방법들의 효과를 쉽게 평가할 수 있을 것으로 생각된다.

Keywords

References

  1. Larsson B, Svardsudd K, Welin L, Wilhelmsen L, Bjorntorp P, Tibblin G. Abdominal adipose tissue distribution, obesity, and risk of cardiovascular disease and death: 13-year follow-up of participants in the study of men born in 1913. BMJ 288:1401-1404, 1984. https://doi.org/10.1136/bmj.288.6428.1401
  2. Kissebah AH, Vydelingum N, Murray R, Evans DJ, Hartz AJ, Kalkhoff RK, Adams PW. Relation of body fat distribution to metabolic complications of obesity. J Clin Endocrinol Metab 54:254-260, 1982. https://doi.org/10.1210/jcem-54-2-254
  3. DeFronzo RA, Ferrannini E. Insulin resistance: a multifaceted syndrome responsible for NIDDM, obesity, hypertension, dyslipidemia, and atherosclerotic cardiovascular disease. Diabetes Care 14: 173-194, 1991. https://doi.org/10.2337/diacare.14.3.173
  4. Fujioka S, Matsuzawa Y, Tokunaga K, Tarui S. Contribution of intra-abdominal fat accumulation to the impairment of glucose and lipid metabolism in human obesity. Metabolism 36:54-59, 1987. https://doi.org/10.1016/0026-0495(87)90063-1
  5. Rossner S, Bo WJ, Hiltbrandt E, Hinson W, Karstaedt N, Santago P, Sobol WT, Crouse JR. Adipose tissue determinations in cadavers: a comparison between cross-sectional planimetry and computed tomography. Int J Obes 14:893-902, 1990.
  6. Seidell JC, Cigolini M, Charzewska J, Ellsinger BM, Deslypere JP, Cruz A. Fat distribution in european men: a comparison of anthropometric measurements in relation to cardiovascular risk factors. Int J Obes Relat Metab Disord 16:17-22, 1992.
  7. Bertin E, Marcus C, Ruiz JC, Eschard JP, Leutenegger M. Measurement of visceral adipose tissue by DXA combined with anthropometry in obese humans. Int J Obes Relat Metab Disord 24:263-270, 2000. https://doi.org/10.1038/sj.ijo.0801121
  8. Tornaghi G, Raiteri R, Pozzato C, Rispoli A, Bramani M, Cipolat M, Craveri A. Anthropometric or ultrasonic measurements in assessment of visceral fat?: a comparative study. Int J Obes Relat Metab Disord 18:771-775, 1994.
  9. Armellini F, Zamboni M, Robbi R, Todesco T, Rigo L, Bergamo-Andreis IA, Bosello O. Total and intraabdominal fat measurements by ultrasound and computerized tomography. Int J Obes Relat Metab Disord 17:209-214, 1993.
  10. Bjorntorp P. Portal adipose tissue as a generator of risk factors for cardiovascular disease and diabetes. Arteriosclerosis 10:493-496, 1990. https://doi.org/10.1161/01.ATV.10.4.493
  11. Kahn SE, Prigeon RL, Schwartz RS, Fujimoto WY, Knopp RH, Brunzell JD, Porte D Jr. Obesity, body fat distribution, insulin sensitivity and islet beta-cell function as explanations for metabolic diversity. J Nutr 131:354S-360S, 2001.
  12. Arner P. Differences in lipolysis between human subcutaneous and omental adipose tissues. Ann Med 27:435-438, 1995. https://doi.org/10.3109/07853899509002451
  13. Dusserre E, Moulin P, Vidal H. Differences in mRNA expression of the proteins secreted by the adipocytes in human subcutaneous and visceral adipose tissues. Biochim Biophys Acta 1500:88-96, 2000. https://doi.org/10.1016/S0925-4439(99)00091-5
  14. Ferrannini E, Barrett EJ, Bevilacqua S, DeFronzo RA. Effect of fatty acids on glucose production and utilization in man. J Clin Invest 72:1737-1747, 1983. https://doi.org/10.1172/JCI111133
  15. Tokunaga K, Matsuzawa Y, Ishikawa K, Tarui S. A novel technique for the determination of body fat by computed tomography. Int J obes 7:437-445, 1983.
  16. Pouliot MC, Despres JP, Lemieux S, Moorjani S, Bouchard C, Tremblay A, Nadeau A, Lupien PJ. Waist circumference and abdominal sagittal diameter: best simple anthropometric indexes of abdominal visceral adipose tissue accumulation and related cardiovascular risk in men and women. Am J Cardiol 73:460-468, 1994. https://doi.org/10.1016/0002-9149(94)90676-9
  17. Despres JP, Purd'homme D, Pouliot MC, Tremblay A, Bouchard C. Estimation of deep abdominal adiposetissue accumulation form simple anthropometric measurements in men. Am J Clin Nutr 54:471-477, 1991.
  18. Ohlson LO, Larsson B, Svardsudd K, Welin L, Eriksson H, Wilhelmsen L, Bjorntorp P, Tibblin G. The influence of body fat distribution on the incidence of diabetes mellitus: 13.5 years of follow-up of the participants in the study of men born in 1913. Diabetes 34:1055-1058, 1985. https://doi.org/10.2337/diabetes.34.10.1055
  19. Lapidus L, Bengtsson C, Larsson B, Pennert K, Rybo E, Sjostrom L. Distribution of adipose tissue and risk of cardiovascular disease and death: a 12 year follow-up of participants in the population study of women in Gothenburg, Sweden. BMJ 289:1257-1261, 1984. https://doi.org/10.1136/bmj.289.6454.1257
  20. Clasey JL, Bouchard C, Teates CD, Riblett JE, Thorner MO, Hartman ML, Weltman A. The use of anthropometric and dual-energy X-ray absorptiometry (DXA) measures to estimate total abdominal and abdominal visceral fat in men and women. Obes Res 7:256-264, 1999. https://doi.org/10.1002/j.1550-8528.1999.tb00404.x
  21. Ribeiro-Filho FF, Faria AN, Kohlmann O Jr, Ajzen S, Ribeiro AB, Zanella MT, Ferreira SR. Ultrasonography for the evaluation of visceral fat and cardiovascular risk. Hypertension 38:713-717, 2001. https://doi.org/10.1161/01.HYP.38.3.713
  22. Armellini F, Zamboni M, Rigo L, Bergamo -Andreis IA, Robbi R, de Marchi M, Bosello O. Sonography detection of small intra-abdominal fat variations. Int J Obes 15:847-852, 1991.