The Changes of Tissue Velocity and Strain Rate after Exercise in Patients with Coronary Artery Disease

관상동맥 협착증 환자에서 운동 전후 Tissue Doppler Velocity와 Strain Rate의 변화

Lee, Yeon-Ah;Lee, Byung-Ho;Kang, Heung-Sun;Park, Ji-Young;Choue, Chung-Whee;Song, Jung-Sang;Bae, Jong-Hoa
이연아;이병호;강홍선;박지영;조정휘;송정상;배종화

  • Published : 20030700

Abstract

Background and Objectives:Tissue Doppler imaging (TDI)-derived tissue velocity (TV) and strain rate (SR) are new ultrasonic parameters for assessing the regional myocardial function by quantitatively measuring the myocardial velocity. The aim of this study was to investigate the changes of these indices after exercise, in patients with coronary artery disease (CAD), for comparison with the wall motion score index (WMSI). Subjects and Methods:Twenty-one patients with CAD and 21 normal subjects were studied, before and after an exercise stress test, using the Bruce protocol. TDI data were obtained, and analyzed offline, for peak systolic TV (PSTV) and peak systolic SR (PSSR), using a 16 segment-model. The segmental PSTV and PSSR were compared with the WMSI. Results:The number of segments with a significant increase in the PSTV or PSSR, after exercise (p<0.05), was less in the CAD patients than the normal subjects (9 vs. 14 segments, 7 vs. 10 segments, respectively). The PSTV, after exercise, progressively decreased from the base to the apex in both the normal and CAD groups, but the absolute values were significantly lower in the CAD group (base:8.44$\pm$1.28 vs. 6.56$\pm$1.6, mid:6.31$\pm$1.18 vs. 4.26$\pm$1.25 and apex: 3.48${\pm}$0.83 vs. 1.25$\pm$1.27 cm/sec, p<0.05, respectively). In the normal subjects, the PSSRs, after exercise, were uniform in all segments, whereas this was not the cases in the CAD group (p<0.05). The PSSR showed a negative correlation with the WMSI (r=-0.45, p<0.05). Conclusion:This study has shown that TV and SR can detect the ischemic myocardium with exercise stress, and objectively measure the systolic function in patients with CAD. The quantification of stress echocardiography may overcome the training requirement, and subjective nature, of conventional wall motion scoring.

배경 및 목적:Tissue Doppler image(TDI)에서 파생된 tissue velocity(TV)와 strain rate(SR)는 국소적 심근 기능을 객관적이고 정량적으로 평가할 수 있는 새로운 지표이다. 여러 실험과 임상 연구에서 이들의 유용성이 증명되고 있으나 우리나라에서 관상동맥질환에서 운동부하검사를 시행한 후 얻어진 TV와 SR에 대한 연구는 아직까지 없다. 따라서, 저자는 관상동맥 협착이 있는 환자에서 운동부하 후 TV와 SR의 변화를 알아보고자 하였고 이들과 심실 벽운동지수와의 상관관계를 분석하여 이들지표의 유용성을 연구하고자 하였다. 방법:심장질환이나 기타 다른 전신질환이 없는 정상인 21명과 조영술에서 50%이상의 협착이 확인된 관상동맥 협착증 환자 21명을 대상으로 Bruce protocol에 따른 운동부하 전후에 심초음파를 촬영하였다. 각 영상에서 얻어진 TDI data의 offline분석을 통하여 16개 심근 분절에서 각각 peak systolic TV(PSTV)와 peak systolic strain rate(PSSR)을 측정하였다. 결과:16개 분절 중 운동 부하 후 PSTV 또는 PSSR이 유 의한 증가를 보인 분절은 정상 대조군에서는 각각 14개,10개 분절이었으며 관상동맥 질환군에서는 각각 9개,7개 분절이었다. 운동부하 후 base, mid, apical 분절의 PSTV평균은 정상 대조군에서 8.44$\pm$1.28, 6.31$\pm$1.18, 3.48$\pm$0.83 cm/sec, 관상동맥 질환군에서 6.56$\pm$1.6, 4.26$\pm$1.25, 1.25$\pm$1.27 cm/sec로 양군 모두에서 base, mid, apical순으로 감소되었으나 그 절대값은 관상동맥 질환군이 정상 대조군에 비해 유의하게 감소되어 있었다(p<0.05). PSSR의 base, mid, apical 분절의 평균은 정상 대조군에서 -2.53$\pm$0.97, -2.36$\pm$0.86, -2.52$\pm$0.97 /sec, 질환군에서 -2.19$\pm$0.51, -1.91$\pm$0.5, -1.39$\pm$0.73/sec로 정상 대조군에서는 균일하였으나 (p>0.05), 질환군에서는 균일하지 않았다. 벽운동지수와의 상관관계에서 PSTV는 p=0.41로 유의한 상관관계 가 없었지만 PSSR은 r=-0.45, p=0.03으로 통계학적 으로 유의한 음의 상관관계가 있었다. 결론:본 연구는 TV나 SR을 이용하여 관상동맥 질환에서 운동부하시 허혈성 심근을 구별할 수 있고 심근기능을 객관적, 정량적으로 측정할 수 있다는 것을 보여주었으며 이러한 스트레스 심초음파의 정량화는 시각적 벽운동평가의 주관성을 극복할 수 있을 것이다. 또한 협착 이 있는 관상동맥으로 인해 관류장애를 받는 국소적 허혈 심근 부위는 운동 후 정상인보다 유의한 감소를 보이므로 이러한 차이를 관상동맥 질환의 유무와 위치를 예측하는데 이용할 수 있겠다.

Keywords

References

  1. Picano E, Lattanzi F, Orlandini A, Marini C, L’Abbate A. Stress echocardiography and the human factor: the importance of being expert. J Am Coll Cardiol 1991;17:666-9. https://doi.org/10.1016/S0735-1097(10)80182-2
  2. Schiller NB, Shah PM, Crawford M, de Maria A, Devereux R, Feigenbaum H, Gutgesell H, Reichek N, Sahn D, Schnittger I. Recommentations for quantitation of the left ventricle by two-dimensional echocardiography. J Am Soc Echocardiogr 1989;2:358-67.
  3. Hoffmann R, Lethen H, Marwick T, Arnese M, Fioretti P, Pingitore A, Picano E, Buck T, Erbel R, Flachskampf FA, Hanrath P. Analysis of inter-institutional observer agreement in interpretation of dobutamine stress echocardiograms. J Am Coll Cardiol 1996;27:330-6.
  4. Wilkenshoff UM, Sovany A, Wigstrom L, Olstad B, Lindstrom L, Engvall J, Janerot-Sjoberg B, Wranne B, Hatle L, Sutherland GR. Regional mean systolic myocardial velocity estimation by real-time color Doppler myocardial imaging: a new technique for quantifying regional systolic function. J Am Soc Echocardiogr 1998;11:683-92. https://doi.org/10.1053/je.1998.v11.a90584
  5. Katz WE, Gulati VK, Mahler CM, Gorcsan J 3rd. Quantitative evaluation of the segmental left ventricular response to dobutamine stress by tissue Doppler echocardiography. Am J Cardiol 1997;79:1036-42. https://doi.org/10.1016/S0002-9149(97)00043-X
  6. Yamada E, Garcia M, Thomas JD, Marwick TH. Myocardial Doppler velocity imaging: a quantitative technique for interpretation of dobutamine echocardiography. Am J Cardiol 1998;82:806-9. https://doi.org/10.1016/S0002-9149(98)00447-0
  7. Mirsky I, Parmley WW. Assessment of passive elastic stiffness for isolated heart muscle and the intact heart. Circ Res 1973;33:233-43. https://doi.org/10.1161/01.RES.33.2.233
  8. Uematsu M, Miyatake K, Tanaka N, Matsuda H, Sano A, Yamazaki N, Hirama M, Yamagishi M. Myocardial velocity gradient as a new indicator of regional left ventricular contraction: detection by two-dimensional tissue Doppler imaging technique. J Am Coll Cardiol 1995;26:217-23. https://doi.org/10.1016/0735-1097(95)00158-V
  9. Dumesnil JG, Shoucri RM, Laurenceau JL, Turcot J. A mathematical model of the dynamic geometry of the intact left ventricle and its application to clinical data. Circulation 1979;59:1024-34. https://doi.org/10.1161/01.CIR.59.5.1024
  10. Greenbaum RA, Ho SY, Gibson DG, Becker AE, Anderson RH. Left ventricular fiber architecture in man. Br Heart J 1981;45:248-63. https://doi.org/10.1136/hrt.45.3.248
  11. Cain P, Baglin T, Case C, Spicer D, Short L, Marwick TH. Application of tissue Doppler to interpretation of dobutamine echocardiography and comparison with quantitative coronary angiography. Am J Cardiol 2001;87:525-31. https://doi.org/10.1016/S0002-9149(00)01425-9
  12. Voigt JU, Arnold MF, Karlsson M, Hubbert L, Kukulski T, Hatle L, Sutherland GR. Assessment of regional longitudinal myocardial strain rate derived from Doppler myocardial imaging indexes in normal and infracted myocardium. J Am Soc Echocardiogr 2000;13:588-98. https://doi.org/10.1067/mje.2000.105631
  13. Jones CJ, Raposo L, Gibson DG. Functional importance of the long axis dynamics of the human left ventricle. Br Heart J 1990;63:215-20. https://doi.org/10.1136/hrt.63.4.215
  14. Alam M, Hoglund C, Thorstrand C. Longitudinal systolic shortening of the left ventricle: an echocardiographic study in subjects with and without preserved global function. Clin Physiol 1992;12:443-52. https://doi.org/10.1111/j.1475-097X.1992.tb00348.x
  15. Simonson JS, Schiller NB. Descent of the base of the left ventricle: an echocardiographic index of the left ventricular function. J Am Soc Echocardiogr 1989;2:25-35.
  16. Willenheimer R, Cline C, Erhardt L, Israelsson B. Left ventricular atrioventricular plane displacement: an echocardiographic technique for rapid assessment of prognosis in heart failure. Heart 1997;78:230-6.
  17. Cain P, Baglin T, Khoury V, Case C, Spicer D, Marwick TH. Automated regional myocardial displacement for facilitating the interpretation of dobutamine echocardiography. Am J Cardiol 2002;89:1347-53. https://doi.org/10.1016/S0002-9149(02)02345-7
  18. Heimdal A, Stoylen A, Torp H, Skajaerpe T. Real-time strain rate imaging of the left ventricle by ultrasound. J Am Soc Echocardiogr 1998;11:1013-9. https://doi.org/10.1016/S0894-7317(98)70151-8
  19. Sutherland GR, Stewart MJ, Groundstroem KW, Moran CM, Fleming A, Guell-Peris FJ, Riemersma RA, Fenn LN, Fox KA, McDicken WN. Color Doppler-myocardial imging: a new technique for the assessment of myocardial function. J Am Soc Echocardiogr 1994;7:441-58.
  20. Evardsen T, Skulstad H, Aakhus S, Urheim S, Ihlen H. Regional myocardial systolic function during acute myocardial ischemia assessed by strain Doppler echocardiography. J Am Coll Cardiol 2001;37:726-30. https://doi.org/10.1016/S0735-1097(00)01160-8
  21. Abraham TP, Nishimura RA, Holmes DR Jr, Belohlavk M, Seward JB. Strain rate imaging for assessment of regional myocardial function: results from a clinical model of septal ablation. Circulation 2002;105:1403-6. https://doi.org/10.1161/01.CIR.0000013423.33806.77
  22. Stoylen A, Heimdal A, Bjornstad K, Weiseth R, Vik-Mo H, Torp H, Angelsen B, Skjarpe T. Strain rate imaging by ultrasonography in the diagnosis of coronary artery disease. J Am Soc Echocardiogr 2000;13:1053-64. https://doi.org/10.1067/mje.2000.106573
  23. Gotte MJ, van Rossum AC, Twisk JW, Kuijer JP, Marcus JT, Visser CA. Quantification of regional contractile function after infarction: strain analysis superior to wall thickening analysis in discriminating infarct from remote myocardium. J Am Coll Cardiol 2001;37:808-17. https://doi.org/10.1016/S0735-1097(00)01186-4