Effect of UV-B Irradiation on Overgrowth Retardation of Plug-Grown Fruit Vegetable Transplants

UV-B 조사가 과채류 플러그 묘의 도장 억제에 미치는 영향

Kwon, Joon-Kook;Park, Joong-Choon;Lee, Jae-Han;Park, Dong-Kum;Choi, Young-Hah
권준국;박중춘;이재한;박동금;최영하

  • Published : 20030000

Abstract

This study was conducted to determine an optimal time, cycle, duration, and intensity of ultraviolet-B (UV-B) irradiation as environmentally friendly method to retard the overgrowth of cucumber, tomato, and hot pepper transplants in summer season. The appropriate transplant age for UV-B irradiation to prevent overgrowth without visible damages was found to be 10 days after germination (1.5 to 2.0 true leaf stage) for cucumber, and 15 days after germination (2.5 to 3.0 true leaf stage) for tomato and hot pepper, respectively. Irradiation of 4 $kJ\acute{a}m^{-2}\acute{a}d^{-1}$ UV-B in every 2-day interval turned out to be the optimal irradiation cycle to retard the overgrowth of transplant without leaf chlorosis despite its less retarding effect compared with everyday irradiation. With increasing the UV-B intensity, stem length of the transplants was shortened by 13 to 42% in cucumber, 30 to 45% in tomato, and 15 to 30% in hot pepper, compared with non-irradiated transplants. Leaf area, leaf size, and dry weight were also decreased as the irradiation amount increased. There was a highly significant negative correlation between UV-B intensity and height of the transplants. On the other hand, the leaf number and thickness, the stem diameter, and the dry weight per unit leaf area and per unit stem length of the UV-B-irradiated transplants were slightly greater than those of the non-irradiated transplants. UV-B irradiation brought about the greatest reduction in stem dry weight followed by leaf dry weight irrespective of crops. Root dry weight of UV-B-irradiated cucumber transplants was only slightly decreased, whereas that of UV-B-irradiated tomato and hot pepper transplants showed no significant difference from the non-irradiated transplants. The optimal UV-B irradiation intensity and cycle, therefore, were found to be 2 to 4 $kJ\acute{a}m^{-2}\acute{a}d^{-1}$ for cucumber and tomato, respectively, and 4 $kJ\acute{a}m^{-2}\acute{a}d^{-1}$ for hot pepper with every 2 days intervals judging from leaf curling and shrinkage and/or severe leaf chlorosis at 6 $kJ\acute{a}m^{-2}\acute{a}d^{-1}$ irradiation.

오이, 토마토, 고추 작물의 고온기 플러그 육묘 시에 발생하는 묘의 도장을 억제하고자, 친환경적인 도구인 UV-B의 처리방법(시기, 주기 및 강도)을 구명하고자 하였다. 묘가 장애를 받지않고 도장 억제 효과를 낼 수 있는 UV-B 처리 시기는 오이의 경우 발아 후 10일경인 본엽 1.5-2.0매 전개 시, 토마토와 고추는 발아후 15일경인 본엽 2.5-3.0매 전개 시가 적적하였다. UV-B의 처리 주기는 2일 간격으로 처리하는 것이 매일 처리하는것에 비해 생장 억제 효과는 감소되나 잎에 가시적 장해를 주지 않고 도장을 억제 할 수 있었다. UV-B 강도는 2에서 6kJ m−2 d−1 로 증가됩에 따라 줄기 길이가 무처리에 비해 오이 13−42%, 토마토 32-44%, 고추 14-31% 각각 감소되었고, 3작물 모두 엽면적 잎의 크기 및 식물체 건물중 등도 줄기 길이 감소와 비슷한 경향이었다. 반면 엽수, 잎 두께, 경경, 그리고 단위 엽면적 및 줄기 길이당 건물중은 UV-B 처리에 의해 다소 증가되었다. 부위별 건물중의 감소는 3작물 모두 줄기가 가장 컸고 다음으로 잎이었으며, 뿌리는 오이에서 다소 감소하였으나 토마토와 고추에서는 무처리와 비슷한 경향이었다. 고수준(6kJ m−2 d−1)의 UV-B처리는 묘의 잎을 오그라들게 하거나 뒤틀리게 하며 심한것은 황백화를 초래하므로 오이와 토마토는 2−4kJ·m−2·d−1, 고추는 4kJ·m−2·d−1 수준을 2일 간격으로 처리하는 것이 적당할 것으로 판단된다.

Keywords

References

  1. Bae, E.J. 1999. Growth control of vegetable seedlings by plant growth retardant and UV light treatment. PhD Diss., Kyeonghee Univ., Suwon, Korea
  2. Bae, E.J., K. Inamoto, M. Doi, and H. Imanishi. 1998. Retardation of hypocotyl elongation of ornamental and vgetable seedling by ultraviolet irradiation. J. Jpn. Soc. Hort. Sci. 67:945-950 https://doi.org/10.2503/jjshs.67.945
  3. Bertram, L. and B. Lercari. 1996. The use of UV radiation to control the architecture of Salvia splendens plants: II. Relationships between PAR levels and radiation in the photoregulation of stem elongation. Photochem. Photobiol. 64:131-136 https://doi.org/10.1111/j.1751-1097.1996.tb02432.x
  4. Caldwell, M.M., R. Robberecht, and S.D. Flint. 1983. Internal filters: Prospects for UV-acclimation in higher plants. Physiol. Plant. 58:445-450 https://doi.org/10.1111/j.1399-3054.1983.tb04206.x
  5. Choi, Y.H. 2002. Transplant quality and the yield of tomatoes and cucumbers as affected by transplant production methods in summer. PhD Diss., Gyeongsang Natl. Univ., Jinju, Korea
  6. Choi, Y.H., J.L. Cho, H.C. Rhee, D.K. Park, J.K. Kwon, and J.H. Lee. 2002. Effect of summer grown seedling quality on growth and yield of tomato. J. Kor. Soc. Hort. Sci. 43:395-398
  7. Dai, Q., S. Peng, A.Q. Chavez, and B.S. Vergara. 1994. Intraspecific responses of 188 rice cultivars to enhanced UV-B radiation. Environ. Exp. Bot. 34:433-442 https://doi.org/10.1016/0098-8472(94)90026-4
  8. Garner, L.C. and B. Thomas. 1996. Mechanical conditioning for controlling excessive elongation in tomato transplants: Sensitivity to dose, frequency, and timing of brushing. J. Amer. Soc. Hort. Sci. 121:894-900
  9. Gent, M.P.N. 1997. Persistence of triazole growth retardants on stem elongation of Rhododendron and Kalmia. J. Plant Gowth Regul. 16:197-203 https://doi.org/10.1007/PL00006996
  10. Giannini, A., A. Pardossi, and B. Lercari. 1996. The use of UV radiation to control the architecture of Salvia splendens plants. I. Effects on plant growth, water relations, and gas exchange. Photochem. Photobiol. 64:123-130 https://doi.org/10.1111/j.1751-1097.1996.tb02431.x
  11. Giuseppe, D.C. and B. Lercari. 1997. Use of UV radiation for control of height and conditioning of tomato transplants. Sci. Hort. 71:27-34 https://doi.org/10.1016/S0304-4238(97)00083-6
  12. He, J., L.K. Huang, W.S. Chow, M.I. Whitecross, and J.M. Anderson. 1993. Effects of supplementary ultraviolet-B radiation on rice and pea plants. Aust. J. Plant Physiol. 20:129-142
  13. Kang, H.K., Y.J. Kang, Y.Y. Lee, S.H. Lee, and G.Y. Bae. 1999. Effect of UV-B radiation and $CO_2$ enhancement on pigment formation in Cucumis sativus L. Kor. J. Hort. Sci. Technol. 17:184 (Abstr.)
  14. Kim, H.Y., D.H. Shin, and K.U. Kim. 2000. Effects of different UV-B levels on growth, antioxidant contents, and activities of related enzymes in cucumber. Kor. J. Environ. Agr. 19:309-313
  15. Kim, H.Y., Y.S. Park, I.J. Lee, D.H. Shin, and K.U. Kim. 1998. Effects of antioxidants on UV-B susceptibility in soybean. J. Kor. Environ. Sci. 7:633-638
  16. Lercari, B., F. Bretzel, and S. Piazza. 1992. Effects of UV treatments on stem growth of some greenhouse crops. Acta Hort. 327:99-104
  17. Mirecki, R.M. and A.H. Teramura. 1984. Effects of ultraviolet-B irradiation on soybean. Plant Physiol. 74:475-480 https://doi.org/10.1104/pp.74.3.475
  18. Runeckles, V.C. and S.V. Krupa. 1994. The impact of UV-B radiation and ozone on terrestrial vegetation. Environ. Pollu. 83:191-213 https://doi.org/10.1016/0269-7491(94)90035-3
  19. Shumin, L., N.C. Rajapakse, R.E. Young, and R. Oi. 2000. Growth responses of chrysanthemum and bellpepper transplants to photoselective plastic films. Sci. Hort. 84:215-222 https://doi.org/10.1016/S0304-4238(99)00136-3