Spatial Genetic Structure of Korean Black Raspberry (Rubus coreanus) at Mt. chiak Using I-SSR Markers

I-SSR 標識子를 利用한 치악산 복분자딸기(Rubus coreanus)의 空間分布에 따른 遺傳構造

Kang, Bum-Yong;Hong, Kyung-Nak;Chung, Jae-Min;Hong, Yong-Pyo
강범용;홍경낙;정재민;홍용표

  • Published : 20030000

Abstract

This study was conducted to analyze the spatial genetic structure of Korean Black Raspberry(Rubus coreanus) a shrubby perennial species, at Seunghwangrim in Mt. Chiak using I-SSR (inter-simple sequence repeats) marker system. Also, it was investigated the spatial pattern of total 60 individuals which was divided into 'Plot I (45 individuals)' within the stand and 'Plot II (15 individuals)' along the brooklet. There were 34 polymorphic and 5 monomophic markers generated from 5 primers, Percentage of polymorphic markers was 87.2%. Shannon's Index showed higher genetic diversity within Plot I (0.579) than Plot II (0.450), and the average was 0.576. Mean distance of pairs between trees was 8.0m in Plot I and 19.8m in Plot II, and maximum distance was 222.6m in Plot I and 278. 0m in Plot II. Aggregation Index in Plot I (0.647) was significant at 0.1% level, which was the clumped distribution, but that of Plot II exhibited the random distribution. The results of spatial autocorrelation analysis revealed that the individuals in Plot I was genetically homogeneous within spatial distance of 20m and the randomness of genetic distribution was from 20m to 60m. However, there was the absence of genetic patchiness in Plot II . For the ex situ conservation of Korean black raspberry in Mt. Chiak, the individuals may be collected with the spatial distance of 20 meters between trees, In directional variogram using genetic distance in Plot I, the increment of spatial distance from South-West to North-East direction was inversely proportional to genetic homogeneity and was coincided with the narrow path in the study site. The anisotrophy of distribution of R. coreanus in Plot I might be resulted from the directionality of seedling dispersal along the narrow path where high intensity of light is provided.

본 연구는 I-SSR(inter-simple sequence repeats) 표지자를 이용하여 덩굴성 낙엽활엽관목 복분자딸기(Rubus coreanus)의 공간적 분포에 따른 유전적 구조를 파악하기 위해서 치악산 성황림내 임내지역의 45개체(Plot I)와 개울가 지역의 15개체(Plot II) 총60개체에 대한 공간분포를 조사하였다. 선발된 4개 I-SSR primer에서 총 39개 I-SSR 증폭물을 얻었으며 5개의 단형성 증폭물을 제외한 34개의 증폭물을 분석에 이용하였다. 평균 다형성 표지자 비율은 87.2%였으며 I-SSR 표지자 다양성(Shannon's Index)은 평균 0.576(Plot I : 0.579, Plot II : 0.450)로 높게 나타났다. 두 개체간 쌍을 이룬 경우에 개체간의 평균거리는 각각 8.0m(Plot I)차 19.8m(Plot II)였고, 가장 멀리 떨어진 두 개체간 거리는 222.6m(Plot I)와 278.0m(Plot II)였다. 또한 조사구내 개체의 분포상태를 나타내는 군집지수는 Plot I의 복분자딸기는 0.647(0.1% 유의수준)로 집중분포를 나타냈으나 Plot II는 임의 분포를 나타냈다. 공간의 자기상관성분석에서 Plot I 지역은 20m이내에 유전적 동질성을 갖는 군락의 크기를 나타냈으며, 20-60m 구간에서는 임의분포를 나타내었다. Plot II 지역은 유전적 군락이 형성되지 않았다. 본 연구결과 현지외 유전자원보존을 위한 개체의 선정은 최소한 20m 이상의 거리를 띄어야 바람직한 것으로조사되었다. Plot I 지역의 복분자딸기의 공간적 위치에 대한 방향성을 파악하기 위해 분산도 분석을 실시한 결과, 임분내 유전적 방향성은 남서-북동 방향으로 거리의 증가에 따라 개체간 유전적 동질성이 계속 감소하는 것으로 나타났으며 임분내 小路의 방향과 일치하였다. 따라서 Plot I 지역의 복분자딸기의 공간적 방향성의 원인은 소로에서의 충분한 수광량에 따른 실생묘의 전파 방향성에 따른 것으로 생각된다.

Keywords

References

  1. 백길전. 1999. 성황림(원주시)의 식생구조 및 관리대책에 관한 연구-천연기넘둘 제93호. 상지대학교 석사학위논문. pp36
  2. 홍경낙 . 강범용 . 홍용표. 2001. 리기테다소나무 $F_1$ 조림지에서 발생한 풍매차대의 공간구조. 한국육종학회지 33 : 211-216
  3. 김만조 . 이욱 . 김세현 . 정헌관. 2002. 복분자의 잎, 結果 및 과실 특성 변이. 한국육종학회지 34 : 50-56
  4. 김태욱. 1994. 원색도감 한국의 수목. 교학사.서울. pp. 643
  5. Berg, E. E. and J. L Hamrick, 1994. Spatialgenetic structure of two sandhills oaks :Quercus taevis and Quercus margaretta(Fagaceae). American Joumal of Botany 81 : 7-14 https://doi.org/10.2307/2445556
  6. Cho, K. J., J. M. Chung, W. W. Kim andY. P. Hong. 2003. Population genetic stmc-ture of three Fraxinus species in Korea. (inpreparation)
  7. Chung, M, G. and B. K. Epperson. 2000.Clonal and spatial genetic structure in Euryaemarginata(The3iceSLe). Heredity 84 : 170-177 https://doi.org/10.1046/j.1365-2540.2000.00644.x
  8. Chung, M. G., J. M. Chung, M. Y. Chungand B. K. Epperson. 2000. Spatial distributionof allozyme polymorphisms following clonaland sexual reproduction in populations of Rhusjavanica (Anacardiaceae). Heredity 84 : 178-185 https://doi.org/10.1046/j.1365-2540.2000.00660.x
  9. Clark, P. J. and F. C. Evans. 1954. Distanceto nearest neighbor as a measure of spatialrelationships in populations. Ecology 35 : 445-453 https://doi.org/10.2307/1931034
  10. Coates, D. J. 1988. Genetic diversity andpopulation genetic structure in the rareChittenng grass wattle Acacia anawtaIa Court.Australian Joumal of Botany 36 : 22-27
  11. Degen, B. SGS(Spatia1 Genetic Software).Version l.Ob. A Windows program for theanalysis of spatial autocorrelation of quanti-tative trait, allozyme, and DNA data. Institutefor Forest Genetics and Forest Tree Breeding,Germany. (http : // kourou.cirad.fr/genetique/software.html)
  12. Dewey, S. and J. S. Heywood. 1988. Spatialgenetic structure in a population of Psychotrianervosa. I. Distribution of genotypes. Evolution 42 : 834-838 https://doi.org/10.2307/2408877
  13. Epperson, B. K. and R. W. Allard. 1989.Spatial autocon-elation analysis of thedistribution of genotypes within populations oflodgepole pine. Genetics 121 : 369-377
  14. Gabrielsen, T. M, K. Bachmann, K. S.Jakobsen and C. Brochmann. 1997. Glacialsurvival does not matter : RAPD phylogeographyof Nordic Saxifraga oppositifotia. MolecularEcology 6 : 831-842
  15. Graham, J., G. R. Squire, B. Marshall andR. E. Harrison. 1997. Spatially dependentgenetic diversity within and between coloniesof wild raspberry Rubus idaeus detected usingRAPD markers. Molecular Ecology 6 : 1001-1008 https://doi.org/10.1046/j.1365-294X.1997.00272.x
  16. Hamrick, J. L. 1983. The distribution ofgenetic variation within and among naturalplant populations. pp. 335-348. hi : Schonewald-Cox, C., S. Chambers, B. MacBryde, and W.Thomas. eds. Genetics and ConservationBenjamin/Cummings, Menlo Park, Canada
  17. Hong, Y. P., K. J. Cho, Y. Y. Kim and EM. Shin. 1998. Mendelian inheritance of intersimple sequence repeats markers in Abieskoreana Wilson. Joumal of Korean ForestrySociety 87 : 422-428
  18. Hong, Y. P., M. J. Kim and K. N. Hong.2003. Genetic diversity in natural populationsof two geographic isolates of Korean blackraspberry. The Joumal of Horticultural Scienceand Biotechnology. (in press)
  19. Hong, Y. P., K. J. Cho, K. N. Hong andE. M. Shin. 2001b. Diversity of I-SSRVariants in Gingko bitoba L. Planted in 6Regions of Korea. Joumal of Korean ForestrySociety 90 : 169-175
  20. Hong, Y. P., K. J. Cho, Y. Y. Kim, E.M. Shin and S. K. Pyo. 2000. Diversity of I-SSR variants in the population of Torreyanucifera. Joumal of Korean Forestry Society89 : 167-172
  21. Knowles, P. 1992. Spatial genetic structurewithin two natural stands of black sDruce(PIceamariana (Mill.) B.S.P.). Silvae Genetica 40 :13-19
  22. Knowles, P., D. J. Perry and H. Foster.1992. Spatial genetic structure in two tamarack[Larix taricina (Du Roi) K. Koch] populationswith differing establishment histories. Evolu-tion 46 : 572-576 https://doi.org/10.2307/2409875
  23. Loveless, M. D. and J. L. Hamrick. 1984.Ecological determinants of genetic structure inplant populations. Annual Review of Ecologyand Systematics 15 '. 65-95 https://doi.org/10.1146/annurev.es.15.110184.000433
  24. Maki, M. and M. Masuda. 1994. Spatialgenetic stmcture within two populations of aself-incompatible perennial, Chinographisjaponica var. japonica (Liliaceae). Joumal ofPlant Research 107 : 283-287
  25. Merzeau, D., B. Comps, B. Thiebaut, J.Cuguen and J. Letouzey. 1994. Geneticstructure of natural stands of Fagus sylvaticaL.(beech). Heredity 72 : 269-277 https://doi.org/10.1038/hdy.1994.37
  26. Montalvo, A. M., S. G. Conard, M. T.Conkle and P. D. Hodgskiss. 1997. Population structure, genetic diversity, and cloneformation in Quercus chrysoIepsiUFagaceae).American Joumal of Botany 84 : 1553-1564 https://doi.org/10.2307/2446617
  27. Pannatier, Y. 1996. VARIOWtN'. Software forSpatial Data Analysis in 2D. Springer-VerlagNew York Inc., NY. pp. 91
  28. Perry, D. J. and P. Knowles. 1991. Spatialgenetic structure within three sugar maple(Acersaccharum Marsh.) stands. Heredity 66 : 137-142 https://doi.org/10.1038/hdy.1991.17
  29. Rossi, R. E., D. J. Mulla, A. G. Joumeland E. H. Franz. 1992. Geostatistical toolsfor modeling and interpreting ecological spatialdependence. Ecological Monographs 62 : 277-314 https://doi.org/10.2307/2937096
  30. SAS Institute Inc. 1989. SAS/STAT User'sGuide, version 6, 4th edition, volume 2. SASInstitute Inc. USA. pp. 846
  31. Syeds, M. A. and R. Peakall. 1998.Extensive clonality in the endangered shrubHatoragodendron tucasii (Haloragaceae) re-vealed by allozymes and RAPDs. MolecularEcology 7 : 87-93
  32. Tani, N., N. Tomaru, Y. Tsumura, M.Araki and K. Ohba. 1998. Genetic structurewithin a Japanese stone pme(Pinus pumiIaRegel) population on Mt. Aino-Dake in centralHonshu, Japan. Joumal of Plant Research 111 :7-15 https://doi.org/10.1007/BF02507145
  33. Ueno, S., N. Tomaru, H. Yoshimaru, T.Manabe and S. Yamamoto. 2000. Geneticstructure of CamelIia japonica L. in an old-growth evergreen forest, Tsushima, Japan.Molecular Ecology 9 : 647-656 https://doi.org/10.1046/j.1365-294x.2000.00891.x
  34. Xie, C. Y. and P. Knowles. 1991. Spatialgenetic substmcture within natural populationsof jack p'me(Pinus banksiand). CanadianJoumal of Botany 69 : 547-551 https://doi.org/10.1139/b91-074