Substitute Shear Strain and Nonconforming Four-Node Isoparametric Plate Element for Laminated Composite Plates

복합적층판 해석을 위한 대체전단변형 및 비적합 등매개변수 4절점 평판요소

Park, Dae-Yong;Chun, Kyoung-Sik;Chang, Suk-Yoon
박대용;천경식;장석윤

  • Published : 2003.11.29

Abstract

In this paper, four-node Ressiner-Mindlin plate element with substitute shear strain and nonconforming displacement mode is used for analyzing laminated composite plates. The transverse shear deformation is formulated by using the first-order shear deformation theory. Commonly, transverse shear locking phenomenon is possible for the application of the four-node Ressiner-Mindlin plate element especially in the case of having slender thickness of plate. The reduced integration strategy for solving the transverse shear locking brings about spurious zero energy modes. Substitute strain field is used to avoid the locking and spurious zero energy modes. Nonconforming displacement modes are also employed to improve in-plane and out-of-plane behaviors of the plate element. The numerical results as variation of thickness ratio, aspect ratio, support condition, fibre-angle, and stacking sequence for laminated composite plates are presented. It is shown that the results using substitute shear strain and nonconforming displacement modes provide reliable and more accurate solutions when comparing to results of other researchers.

본 연구에서는 복합적층판 해석을 위해 대체전단변형과 비적합 변위모드를 사용한 등매개변수 4절점 평판요소를 사용하였으며, 전단변형효과를 고려하기 위해 일차전단변형 이론을 적용하였다. 판의 두께가 얇아지면서 발생하는 전단잠김 현상과 감차적분에 의해 발생하는 가상의 제로에너지모드를 제거하기 위해 대체전단변형을 적용하였고 비적합 변위모드를 사용하여 면내와 면외거동을 개선하였다. 본 연구에서 사용한 요소의 정확도를 평가하기 위해 복합적층판의 폭-두께비, 형상비, 지점조건, 적층각도 및 적층순서 변화에 따른 수치해석 결과를 다른 연구자들의 결과와 비교하였다. 비적합 변위모드와 대체전단변형률을 사용함으로써 우수한 거동을 보였으며 정확한 결과를 나타내었다.

Keywords

References

  1. Int. J. Numer. Methods Engng. v.2 Analysis of thick and thin shell structures by curved finite elements Ahmad, S.;Irons, B.M.;Zienkiewicz, O.C.
  2. Comput. Meth. Appl. Mech. Engng. A natural triangular layered element for bending analysis of isotropic, sandwich, laminated composite and hybrid plates Argyris, J.;Tenek, L.
  3. Int. J. Numer. Methods Engng. v.21 A four node plate bending element based on Mindlin-Ressiner plate theory and a mixed interpolation Bathe, K.J.;Dvorkin, E.N.
  4. Structural Engineering and Mechanics v.8 Defect-free 4node flat shell element : NMS-4F element Choi, C.K.;Lee, P.S.;Park, Y.M.
  5. Int. J. Numer. Methods Engng. v.28 Coupled use of reduced integration and non-conforming modes in quadratic Mindlin plate elements Choi, C.K.;Kim, S.H.
  6. Comp. Methods in Appl. Mech. Engng. v.63 A modified representation of transverse shear in $C^0$ quadrilateral plate elements Donea, J.;Lamain, G.
  7. Engineering Computations v.15 A 24 d.o.f. four-node flat shell finite element for general unsymmetric orthotropic layered composites Groenwold, A.A.;Stander, N.
  8. Engng. Computations v.12 An efficient 4-node 24 d.o.f. thick shell finite element with 5-point quadrature Groenwold, A.A.;Stander, N.
  9. J. Appl. Mech. v.48 Finite elements based upon Mindlin plate theory with particular reference to the four-node bilinear Isoparametric element Hughes, T.J.R.;Tezduyar, T.E.
  10. Int. J. Numer. Methods Engng. v.11 A simple and efficient finite element for plate bending Hughes, T.J.R.;Taylor, R.L.;Worsak, K.N.
  11. Int. J. Numer. Methods Engng. v.34 Improvement of quadratic finite element for Mindlin plate bending Kim, S.H.;Choi, C.K.
  12. Int. J. Numer. Methods Engng. v.20 A shear-flexible triangular finite element model for laminated composite plates Lakshminarayana, H.V.;Murthy, S.S.
  13. Anisotropic Plates, 1956 Lekhnitskii, S.G.;Tsai, S.W.(tr.);Cheron, T.(tr.)
  14. J. Appl. Mech. v.18 Influence of rotary inertial and shear on flexural motions of isotropic elastic plates Mindlin, R.D.
  15. Int. J. Numer. Methods Engng. v.11 Finite element analysis of anisotropic plates Noor, A.K.;Mathers, M.D.
  16. AIAA J. v.14 Anisotropy and shear deformation in laminated composite plates Noor, A.K.;Mathers, M.D.
  17. Shear-flexible finite element models of laminated composite plates and shells, NASA TN D-8044 Noor, A.K.;Mathers, M.D.
  18. Int. J. Numer. Methods Engng. v.14 Finite element analysis of laminated composite plates Panda, S.C.;Natarajan, R.
  19. Computer and Structures v.25 A field-consistent four-noded, laminated anisotropic shell element Somashekar, B.R.;Prathap, G.;Babu, C.R.
  20. J. Comp. Mater. v.11 Alternate hybrid-stress elements for analysis of multiplayer composite plates Spilker, R.L.;Chou, S.C.;Oninger, O.
  21. Int. J. Numer. Methods Engng. v.10 A non-conforming element for stress analysis Taylor, R.L.;Beresford, P.J.;Wilson, E.L.
  22. Finite Elements in Analysis and Design v.28 Hybrid strain-based three-node flat triangular laminated composite shell elements To, C.W.S.;Wang, B.
  23. J. Appl. Mech. v.40 Shear correction factors for orthotropic laminates under static load Whitney, J.M.
  24. J. Appl. Mech. v.37 Shear deformation in heterogeneous anisotropic plates Whitney, J.M.;Pagano, N.J.
  25. J. Comp. Mater. v.4 The effect of boundary conditions on the response of laminated composite plates Whitney, J.M.
  26. Finite Elements in Analysis and Design v.7 Use of incompatible displacement modes for the calculation of element stiffnesses or stresses Wilson, E.L.;Ibrahimbegovic, A.
  27. Int. J. Numer. Methods Engng. v.8 The static condensation algorithm Wilson, E.L.
  28. Int. J. Solids Struct. v.2 Elastic wave propagation in heterogeneous plates Yang, P.C.;Norris, C.M.;Stavsky, Y.
  29. Int. J. Numer. Methods Engng. v.3 Reduced integration techniques in general analysis of plates and shells Zienkiewicz, D.C.;Taylor, R.L.;Too, J.M.
  30. The finite element method: Linear static and Dynamic Finite Element Analysis Hughes, T.J.R.