Clinical Usefulness of the Second Derivative of a Photoplethysmogram Waveform(SDPTG)

Finger Photoplethysmogram의 이차미분파 측정의 임상적 유용성에 관한 연구

Oh, Hye-Lim;Cho, Jin-Man;Jin, Eun-Sun;Kang, Heung-Sun;Choue, Chung-Whee;Kim, Kwon-Sam;Song, Jung-Sang;Bae, Jong-Hwa
오혜림;조진만;진은선;강흥선;조정휘;김권삼;송정상;배종화

  • Published : 20030300

Abstract

Background and Objectives:The second derivative of a photoplethysmogram (SDPTG) is a simple, convenient and non-invasive technique for pulse wave analysis. The SDPTG index correlates with age and other risk factors of atherosclerosis in the Japanese population, but has not yet been described in the Korean population. The purposes of this study were to analyze the age-related changes in the SDPTG of healthy subjects (study 1), and investigate the differences in the SDPTG of patients with hypertension, compared with those of normotensive subjects (study 2). We also compared the differences in the SDPTG between coronary artery disease (CAD) patients and normal subjects (study 3), to test the clinical usefulness of SDPTG in the evaluation of atherosclerosis. Subjects and Methods:We consecutively studied 235 healthy adults, 40 with essential hypertension and 42 with CAD. Their SDPTG were recorded in the sitting position using a Fukuda FCP-3166. Results:In study 1, the b/a ratio increased with age, whereas the c/a, d/a and e/a ratios decreased. The SDPTG aging index (AGI)(y) increased with age (x)(r=0.71, p=0.000;y=22.731x+54.571). In study 2, the patients with hypertension showed a lower average d/a ratio (-0.47${\pm}$0.15 vs. -0.38${\pm}$0.15, p=0.02) and higher average SDPTG AGI (-0.09${\pm}$0.34 vs. -0.26${\pm}$0.37, p=0.011) than the normotensive subjects. In study 3, the patients with CAD had higher average b/a ratio (-0.47${\pm}$0.19 vs.-0.59${\pm}$0.17, p=0.001) and SDPTG AGI (-0.01${\pm}$0.41 vs. -0.23${\pm}$0.40, p=0.004) than the normal subjects. In a logistic regression analysis, the SDPTG AGI was a significant determinant of CAD (p=0.046). Conclusion:The SDPTG aging index may be useful in the evaluation of vascular aging and damage due to hypertension and atherosclerosis.

배경 및 목적:순환동태검사에서 비관혈적인 방법의 하나로서 맥파 측정이 연구되어져 왔다. 이는 계측이 용이하고 기록이 간단하며, 파형패턴의 분석을 통해 혈관 연령 추정 등의 다양한 심혈관계 정보를 얻을 수 있어 그 임상적 유용성이 보고된 바 있다. 하지만 아직 한국에서는 이에관한 연구가 없었기에 저자들은 Finger photoplethysmogram의 이차미분파(second derivative of photoplethysmogram:SDPTG)를 측정하여 연령에 따른 SDPTG의 변화(study 1)와 정상인과 본태성 고혈압 환자에서 SDPTG의 차이를 알아보고(study 2), 관동맥 심질환을 가진 환자와 정상인에서 SDPTG의 차이를 비교하여(study 3), 죽상경화증을 가진 환자를 선별하는데 유용한지를 알아보고자 본 연구를 계획하였다. 방 법:본원 외래를 방문한 정상인 지원자 235명과 본태성 고혈압 환자 40명과 관상동맥조영술을 통해 확진된 안정형 협심증 환자 42명을 대상으로 각각 안정시 SDPTG를자동화 기계로 측정하였다. 결 과:Study 1에서 연령이 증가함에 따라 SDPTG 파형에서 b/a는 상승하였고, c/a, d/a, e/a는 저하되었다. SDPTG aging index는 연령에 따른 SDPTG의 변화로써(b-c-d-e)/a로 정의되며, SDPTG aging index(y)는 연령(x)이 증가함에 따라 상승을 보였다(r=0.71, p=0.000;y=22.731x+54.571). Study 2에서는 고혈압환자군에서 정상인 대조군보다 의미있게 낮은 d/a의 값과(-0.47${\pm}$0.15 vs. -0.38${\pm}$0.15, p=0.02), 의미있게 높은 SDPTG aging index를 보였다(-0.09${\pm}$0.34 vs. -0.26${\pm}$0.37, p=0.011). Study 3에서는 관상동맥심장질환 환자가 대조군에 비해 b/a의 값이 의미있게 높았고(-0.47${\pm}$0.19 vs. -0.59${\pm}$0.17, p=0.001), SDPTG aging index도 높은 값을 보였다(-0.01${\pm}$0.41 vs. -0.23${\pm}$0.40, p=0.004). 또한, 로지스틱 회귀분석을 통하여 SDPTG aging index가 관상동맥 심질환을 예측할 수 있는 의미있는 지표임을 보여주었다(p=0.046). 결 론:SDPTG는 비관혈적이고 간편하게 동맥의 혈관벽의 상태를 평가 가능하게 하며, 이의 여러 지표들이 혈관 연령 추정 및 고혈압에 의한 혈관 손상 및 죽상경화증을 가진 환자들을 선별하는데 도움이 될 수 있으며, 앞으로 더 연구가 필요하겠지만 약물의 치료효과 판정 등 임상적 연구에도 도움이 될 것으로 사료된다.

Keywords

References

  1. Nichols WW, O'Rourke MF. Properties of the arterial wall. In: McDonald's Blood Flow in Arteries: theoretical, experimental and clinical principles. 3rd ed. Edward Arnold: London; 1990. p.77-114.
  2. Safar ME, Frohlich ED. The arterial system in hypertension: a prospective view. Hypertension 1995;26:10-4. https://doi.org/10.1161/01.HYP.26.1.10
  3. Wada T, Kodaira K, Fujishiro K, Maie K, Tsukiyama E, Fukumoto T, Uchida T, Yamazaki S. Correlation of ultrasoundmeasured common carotid artery stiffness with pathological findings. Arterioscler Thromb 1994;14:479-82. https://doi.org/10.1161/01.ATV.14.3.479
  4. London GM, Guerin AP, Marchais SJ, Pannier B, Safar ME, Day M, Metivier F. Cardiac and arterial interactions in end-stage renal disease. Kidney Int 1996;50:600-8. https://doi.org/10.1038/ki.1996.355
  5. Lehmann ED. Noninvasive measurements of aortic stiffness: metholodological considerations. Pathol Biol 1999;47:716-30.
  6. Takazawa K, Fujita M, Kiyoshi Y, Sakal T, Kobayashi T, Maeda K, Yamashita Y, Hase M, Ibukiyama C. Clinical usefulness of the second derivative of a plethysmogram (acceleration plethysmogram). J Cardiol 1993;23(Suppl 37): 207-17.
  7. Takada H, Washino K, Harrel JS, Iwata H. Acceleration plethysmography to evaluate aging effect in cardiovascular system: using new criteria of four wave patterns. Med Prog Technol 1997;21:205-10.
  8. Katsuki K, Yamamoto T, Yuuzu T, Tanaka H, Okano R, Hirata K, Miyachi M, Onodera S, Ono M. A new index of acceleration plethysmogram and its clinical physiological evaluation. Nippon Seirigaku Zasshi 1994;56:215-22.
  9. Takazawa K, Tanaka N, Fujita M, Matsuoka O, Saiki T, Aikawa M, Tamura S, Ibukiyama C. Assessment of vasoactive agents and vascular aging by the second derivative of photoplethysmogram waveform. Hypertension 1998;32: 365-70. https://doi.org/10.1161/01.HYP.32.2.365
  10. Fichett DH. Forearm arterial compliance: a new measure of arterial compliance? Cardiovasc Res 1984;18:651-6. https://doi.org/10.1093/cvr/18.11.651
  11. Yoshimura S, Yoshimura M, Mishima Y. Analysis of the arterial pulse waves. Tokyo: Igakushoin; 1971.
  12. Chirife R, Pigott VM, Spodick DH. Measurement of the left ventricular ejection by digital plethysmography. Am Heart J 1971;82:222-7. https://doi.org/10.1016/0002-8703(71)90269-9
  13. Iwata H, Yamanaka T, Meiocha A, Suzuki D. Relationship among systemic blood pressure, total serum cholesterol and finger plethysmogram. J Jpn Soc Public Health 1973;20: 503-6.
  14. O'Rourke MF. Wave reflection. In: Arterial Function in Health and Disease. Edinburgh: Churchill Livingstone; 1982. p.77-93.
  15. Laogun AA, Goslting RG. In vivo arterial compliance in man. Clin Phys Physiol Meas 1982;3:201-12. https://doi.org/10.1088/0143-0815/3/3/004
  16. Weissler AM, Harris WS, Schoenfeid CD. Systolic time interval in heart failure in man. Circulation 1968;37:149-59. https://doi.org/10.1161/01.CIR.37.2.149
  17. Marchais SJ, Guerin AP, Pannier BM, Levy BI, Safar MF, London GM. Wave reflections and cardiac hypertrophy in chronic uremia: influence of body size. Hypertension 1993; 22:876-83. https://doi.org/10.1161/01.HYP.22.6.876
  18. London GM, Guerin AP, Pannier B, Marchais SJ, Stimpel M. Influence of sex on arterial hemodynamics and blood pressure: role of body height. Hypertension 1995;26:514-9. https://doi.org/10.1161/01.HYP.26.3.514
  19. Hayward CS, Kelly RP. Gender-related differences in the central arterial pressure waveform. J Am Coll Cardiol 1997; 30:1863-71. https://doi.org/10.1016/S0735-1097(97)00378-1
  20. Iketani T, Iketani Y, Takazawa K, Yamashina A. The influence of the peripheral reflection wave on left ventricular hypertrophy in patients with essential hypertension. Hypertens Res 2000;23:451-8. https://doi.org/10.1291/hypres.23.451
  21. Bland J, Altman G. Statistical methods for assessing agreement between two methods of clinical measurement. Lancet 1986;1:307-10.
  22. Bortolotto LA, Blacher J, Kondo T, Takazawa K, Safar ME. Assessment of vascular aging and atherosclerosis in hypertensive subjects: second derivative of photoplethysmogram versus pulse wave velocity. Am J Hypertens 2000;13:165-71. https://doi.org/10.1016/S0895-7061(99)00192-2