Study on expandability and X-ray coherent scattering domain size of bentonite from Gampo and Yonil area, Korea

감포와 연일 지역 벤토나이트의 팽창성 및 X-선 부합성 산란영역 크기에 관한 연구

  • 강일모 (연세대학교 지구시스템과학과) ;
  • 박석찬 (연세대학교 지구시스템과학과) ;
  • 문희수 (연세대학교 지구시스템과학과) ;
  • 유장한 (한국지질자원연구원)
  • Published : 2003.02.01

Abstract

This study was performed to measure expandabilities and coherent scattering domain sizes (CSDs) of bentonite samples from Campo and Yonil area, Korea, using X-ray powder diffraction (XRD), and to compare their experimental data with those of international standard bentonite samples (SAz-1, STx-1, and SWy-2). Most of Gampo and Yonil bentonite samples comprised randomly interstratified illite-smectite (R0 I-S), and their expandabilities ranged over 77-100%S$_{XRD}$ from the saddle/001 method. The interstratification deformed 001 peaks of EG-solvated samples (Mering's first principle), which prohibited us from adopting these peaks to measure CSDs using BWA (Bertaut-Warren-Averbach) method. CSDs of the bentonite samples with R0 I-S could be measured through dehydration at 30$0^{\circ}C$ after K-saturation, where the deformation originated from the interstratification could be removed effectively. Campo and Yonil bentonite samples showed that their mean CSDs ranged over 3.8-5.4 interlayers, and that their CSDs distributions were similar to those of Gonzales (STx-1) and Wyoming (SWy-2) bentonite samples.

본 연구는 X-선분말회절(XRD)을 이용하여 감포와 연일에서 산출되는 벤토나이트에 대한 팽창성과 부합성산란영역크기(CSDs)를 측정하고, 이를 세계표준 벤토나이트(SAz-1, STx-1, SWy-2사 비교해 보고자 하였다. 에틸렌글리콜(EG)포화 시료에서 측정한 001 피크의 저각도 쪽 굴곡과 001 피크의 강도비(saddle/001 강도비)를 이용하여 감포와 연일 벤토나이트의 팽창성을 측정한 결과, 77-100% S$_{XRD}$를 보였으며, GP-56을 제외한 대부분은 무질서형 일라이트-스멕타이트 혼합층광물(RO I-S)로 구성되어 있었다. BWA(Bertaut-Warren-Averbach) 방법으로 CSDs를 측정한 결과, EG-포화시료의 001 피크는 혼합층에 의한 피크의 변형(Mering의 제 1 원칙)이 관찰되었으며, CSDs측정에 부적절하였다. 반면에, 300^{\circ}C$ 열-처리 시료의 001 피크는 혼합층에 의한 변형이 발생하지 않았으며 CSDs측정에 적합하였다. 열-처리 시료로부터 측정한 감포와 연일 벤토나이트의 평균 CSDs는 3.8-5.4층간으로 측정되었으며, 세계표준 벤토나이트와 비교하였을 때, CSDs 분포는 곤잘레스(STx-1)와 와이오밍(SWy-2) 벤토나이트와 유사하였다

Keywords

References

  1. 한국광물학회지 v.15 일라이트-스멕타이트 혼합층광물의 팽창성과 MacEwan 결정자 및 기본입자두께에 관한 연구 강일모;문희수;김재곤;송윤구
  2. Clays Clay Miner. v.45 Comparison of structural models of mixed-layer illite/smectite and reaction meachanisms of smectite illitization Altaner, S.P.;Ylagan, R.F. https://doi.org/10.1346/CCMN.1997.0450404
  3. USGS Open File Report 96-171 MudMaster: A program for calculating crystallite size distributions and strain from the shapes of X-ray diffraction peaks Eberl, D.D.;Drits, V;Srodon, J.;Nuesch, R.
  4. Clays Clay Miner. v.42 A simple technique for identification of one-dimensional powder X-ray diffraction patterns for mixed-layer illite-smectite and other interstratified minerals Drits, V.A.;Varaxina, T.V.;Sakharov, B.A.;Plancon, A. https://doi.org/10.1346/CCMN.1994.0420402
  5. Clays Clay Miner. v.45 XRD measurement of mean crystallite thickness of illite and illite/smectite: Reappraisal of the Kubler index and the Scherrer equation Drits, V.A.;Srodon, J.;Eberl, D.D. https://doi.org/10.1346/CCMN.1997.0450315
  6. Clays Clay Miner. v.46 XRD measurement of mean thickness, thickness distribution and strain for illite and illite-smectite crystallites by the Bertaut-Warren-Averbach technique Drits, V.A.;Eberl, D.D.;Srodon, J. https://doi.org/10.1346/CCMN.1998.0460105
  7. Geol. Soc. Am. Bull. v.87 Mechanism of burial metamorphism of argillaceous sediment: 1. Mineralogical and chemical evidence Hower, J.;Eslinger, E.V.;Hower, M.E.;Perry, E.A. https://doi.org/10.1130/0016-7606(1976)87<725:MOBMOA>2.0.CO;2
  8. Clays Clay Miner. v.41 An experimentally derived kinetic model for smectite-to-illite conversion and its use as a geothermometer Huang, W.L.;Longo, J.M.;Pevear,D.R. https://doi.org/10.1346/CCMN.1993.0410205
  9. Clays Clay Miner. v.37 Convenient technique for estimating smectite layer percentage in randomly interstratified illite/smectite minerals Inoue, A.;Bouchet, A.;Velde, B.;Meunier, A. https://doi.org/10.1346/CCMN.1989.0370305
  10. Clay Miner. v.34 An empirical Scherrer equation for weakly swelling mixed-layer minerals, especially illite-smectite Jaboyedoff, M.;Kubler, B.;Thelin, P.H. https://doi.org/10.1180/000985599546479
  11. Soil chemical analysis-advanced course(2nd ed. 11th printing) Jackson, M.L.
  12. Clay Miner. v.35 Mean thickness and thickness distribution of smectite crystallites Mystkowski, K.;Srodon, J.;Elsass, F. https://doi.org/10.1180/000985500547016
  13. X-ray Diffraction and the Idenfication and Analysis of Clay Minerals(2nd ed.) Moore, D.M.;Reynolds, R.C.
  14. Crystal structures of clay minerals and their X-ray identification. Monograph No. 5 Interstratified clay minerals Reynolds, R.C.;Brindley, G.W.(ed.);Brown, G.(ed.)
  15. NEWMOD for Windows:A program for the calculation of one-dimensional diffraction patterns of mixed-layered clays Reynolds, R.C.;Reynolds, R.C.
  16. Clays Clay Miner. v.32 X-ray powder dissraction identification of illitic materials Srodon, J. https://doi.org/10.1346/CCMN.1984.0320501
  17. Clay Miner. v.27 Chemistry of illite-smectite inferred from TEM measurements of fundamental particles Sordon, J.;Elsass, F.;McHardy, W.J.;Morgan, D.J. https://doi.org/10.1180/claymin.1992.027.2.01
  18. Eur. J. Mineral. v.6 Effect of the shape of fundamental particles on XRD characteristics of illitic minerals Sordon, J.;Elsass, F. https://doi.org/10.1127/ejm/6/1/0113
  19. Clays Clay Miner. v.36 Quantification curves for mica/smectite interstratifications by X-ray powder diffraction Tomita, K.;Takahashi, H;Watanabe, T. https://doi.org/10.1346/CCMN.1988.0360307
  20. Clays Clay Miner. v.38 Role of water in the smectite-to-illite reaction Whitney, G. https://doi.org/10.1346/CCMN.1990.0380402