Preparation and Their Characterization of Blended Polymer Electrolyte Membranes of Polysulfone and Sulfonated Poly(ether ether ketone)

Polysulfone/SPEEK 블랜드 고분자 전해질 막 제조 및 특성 연구

  • Cheon, Hun-Sang (Department of Chemical Engineering, Hanbat National University) ;
  • Oh, Min (Department of Chemical Engineering, Hanbat National University) ;
  • Hong, Seong-Uk (Department of Chemical Engineering, Hanbat National University)
  • 천훈상 (국립한밭대학교 화학공학과) ;
  • 오민 (국립한밭대학교 화학공학과) ;
  • 홍성욱 (국립한밭대학교 화학공학과)
  • Published : 2003.03.01

Abstract

Poly(ether ether ketone)(PEEK) was sulfonated using sulfuric acid and blended with polysulfone with various ratios. The blended polymer electrolyte membranes were characterized in terms of methanol permeability, proton conductivity and ion exchange capacity. As the amount of sulfonated PEEK increased, both methanol permeability and proton conductivity increased. This was due to the increase of ion exchange capacity. The experimental results indicated that the blend membrane with 20% polysulfone was the best choice In terms of the ratio of proton conductivity to methanol permeability.

Poly(ether ether ketone)(PEEK)를 황산을 사용하여 설폰화시킨 후 폴리설폰과 다양한 조성으로 혼합하여 블렌드 고분자 전해질 막을 제조하였고 조성의 변화에 따른 메탄을 투과도, 수소이온전도도, 그리고 이온교환용량의 변화를 측정하였다. 폴리설폰의 경우 이온전도도는 낮은 반면에 메탄올에 대한 저항은 우수하였다. 그러나, 설폰화된 PEEK의 양이 증가함에 따라 메탄을 투과도와 수소이온전도도가 함께 증가하였다. 이온전도도와 메탄을 투과도의 비로부터 폴리설폰의 양이 20%일 때 가장 좋은 선택성을 가지는 것을 알 수 있었다.

Keywords

References

  1. Fuel Cells and their Applications K. Kordesch;G. Simader
  2. Fuel Cell Systems Explained J. Larminie;A. Dicks
  3. Membr. J. v.10 Development of membrane materials for direct methanol fuel cell Y. M. Lee;H. B. Park
  4. J. Membr. Sci. v.153 Comparative investigations of ion exchange membranes S. Koter;P. Pitrowski;J. Kerres
  5. J. Power Source v.70 The degree and effect of methanol crossover in the direct methanol fuel cell J. Cruickshank;K. Scott
  6. J. Power Source v.84 A review of the state of art of the methanol crossover in direct methanol fuel cells A. Heinzel;V. M. Barragan
  7. Solid State Ionics v.97 On the development of proton conducting materials for technical applications K. D. Kreuer
  8. Separ. Puri. Tech. v.14 development and characterization of ion exchange polymer blend membranes W. Cui;J. Kerres;G. Eigenberger
  9. J. Membr. Sci. v.154 Sulfonated and crosslinked polyphosphazene based proton exchange membranes Q. H. Guo;P. N. Pintauro;H. Tang;S. O'connor
  10. Separ. Puri. Tech. v.22 Influence of the structure of sulfonated polyimide membranes on transport properties N. Cornet;G. Beandoing;G. Gebel
  11. J. Appl. Electrochem. v.29 Effects of crosslinking on the physicochemical properties of proton conduction PVDF-g-PSSA membranes T. Lehtinen;G. Sundholm;F. Sundholm
  12. J. Membr. Sci. v.199 Cation permeable membranes from blends of sulfonated poly(ether ketone) and poly(ether sulfone) F. G. Wihelm;I. G. MPunt;N. F. A. van der Vegt;H. Strathnamn;M. Wessling
  13. European Patent 0574 791 A2 F. Helmer;M. Metzmann
  14. J. Membr. Sci. v.171 Performance of the direct methanol fuel cell with radiation-grafted polymer membranes K. Scott;W. M. Taama;P. Argynopoulos
  15. J. Membr. Sci. v.154 Pervaporation membranes in direct methanol fuel cells B. R. Pivovar;Y. X. Wang;E. L. Cussler