Isolation, Identification and Physiological Characteristics of Biofertilizer Resources, Insoluble Phosphate-Solubilizing Bacteria

미생물비료 생물자원인 불용성인산 가용화 세균의 분리, 동정 및 생리적 특성

  • Published : 2003.03.01

Abstract

To develop environment-friendly biofertilizer solubilizing insoluble phosphates, a bacterium possessing a high ability to solubilize $Ca_{3}(PO_{4})_{2}$) was isolated from the rhizosphere of peas. On the basis of its morphological, cultural, physiological characteristics, and Vitek analysis, this bacterium was identified as Pantoea agglomerans. The optimal medium composition and cultural conditions for the solubilization of insoluble phosphate by P. agglomerans R-38 were 3% of glucose.0.1% of TEX>$NH_{4}NO_{3}$, 0.02% of $MgSO_{4}\cdot\7H_{2}O$, and 0.06% of $CaCl_{2}\cdot\2H_{2}O$ along with initial pH 7.5 at $30^{\circ}C$. The highest soluble phosphate production under optimum condition was 898 mg/L after 5 days of cultivation. The solubilization of insoluble phosphate was associated with a drop in the pH of the culture medium. The strain produced soluble phosphate to the culture broth with the concentrations of 698 mg/L against CaHPO$_4$, 912 mg/L against hydroxyapatite, 28 mg/L against $FePO_{4}\cdot\4H_{2}O$, and 19 mg/L against $AIPO_{4}$, respectively.

환경친화적인 미생물인산비료를 개발하기 위하여 불용성 인산을 가용화 시킬 수 있는 세균을 콩의 근권 토양으로부터 분리하였다. 분리균주의 분류학적 위치를 검토한 결과, Pantoea agglomerans로 동정되었다. 불용성 인산인 $Ca_{3}(PO_{4})_{2}$)로부터 가용성 인산을 생성하기 위한 최적 배지 및 배양조건은 glucose 3%, $NH_{4}NO_{3}$ 0.1%, $MgSO_{4}\cdot\7H_{2}O$ 0.02%, $CaCl_{2}\cdot\2H_{2}O$, 0.06%,초기 pH 7.5, 배양온도 $30^{\circ}C$이었으며, 최적조건에서 배양 5 일 후,898 mg/L의 인산이 생성되었다. 불용성 인산 가용화 기작은 유기산 생성에 의한 배양액의 pH감소와 밀접한 관계가 있었다. 분리균주는 $CaHPO_{4}$, hydroxyapatite로부터 각각 698,912 mg/L의 가용성 인산을 생성하였으나 $FePO_{4}\cdot\4H_{2}O$, $AIPO_{4}$로부터는 각각 28,19 mg/L.의 가용성 인산을 생성하였다.

Keywords

References

  1. 부산일보 부산일보
  2. 조선일보 조선일보
  3. Cowan and Steel's Manual for the identification of medical bacteria Barrow, G.I.;R.K.A. Felthanm
  4. Standard methods for the examination of water and wastewater(20th ed.) Clesceri, L.S.;A.E. Greenberg;A.D. Eaton
  5. Manaul of methods for general bacteriology Gerhardt, P.;R.G.E. Murray;R.N. Costilow;E.W. Nester;W.A. Wood;N.R. Krieg;G.B. Phillips
  6. J. Gen. Appl. Microbiol. v.40 A modified plate assay for screening phosphate solubilizing microorganisms Gupta, R.;R. Singal;A. Shankar;R.C. Kuhad;R.K. Saxena https://doi.org/10.2323/jgam.40.255
  7. Bergey's manual of determinative bacteriology(9th ed.) Holt, J.G.;N.R. Krieg;P.H.A. Sneath;J.T. Staley;S.T. Williams
  8. Soil Biol. Biochem. v.27 Solubilization of hardly-soluble $AIPO_4$ with P-solubilizing microorganisms Illmer, P.;A. Barbato;F. Schinner https://doi.org/10.1016/0038-0717(94)00205-F
  9. Soil Biol. Biochem. v.24 Solubilisation of inorganic phosphates by microorganisms isolated from forest soil. Illmer, P.;F. Schinner https://doi.org/10.1016/0038-0717(92)90199-8
  10. Soil. Biol. Biochem v.27 Solubilisation of inorganic calcium phosphates: solubilisation mechanisms Illmer, P.;F. Schinner https://doi.org/10.1016/0038-0717(94)00190-C
  11. FEMS Microbiol. Lett. v.153 Rahnella aquatilis, a bacterium isolated form soybean rhizopshere, can solubilize hydroxyapatite Kim, K.Y.;D. Jordan;H.B. Krishnan https://doi.org/10.1016/S0378-1097(97)00246-2
  12. Biochemical tests for identification of medical bacteria Macfaddin, J.F.
  13. Soil Biol. Biochem. v.32 Aspergillus aculeatus as a rock phosphate solubilizer Narsian, V.;H.H. Patel https://doi.org/10.1016/S0038-0717(99)00184-4
  14. FEMS Microbiol. Lett. v.182 Stress induced phosphate solubilization in bacteria isolated from alkaline soils Nautiyal, C.S.;S. Bhadauria;P. Kumar;H. Lal;R. Mondal;D. Verma https://doi.org/10.1111/j.1574-6968.2000.tb08910.x
  15. FEMS Microbiol. Ecol. v.28 Effect of nitrogen source on the solubilization of different inorganic phosphates by an isolate of Penicillium rugulosum and two UV-induced mutants. Reyes, I.;L. Bernier;R.R. Simard;H. Antoun
  16. J. Biotechnol. v.84 Expression of a mineral phosphate solubilizing gene from Erwinia herbicola in two rhizobacterial strains. Rodriguez, H.;T. Gonzalez;G. Selman https://doi.org/10.1016/S0168-1656(00)00347-3
  17. Modern soil microbiology. Van Elasa, J.D.;J.T. Trevors;E.M.H. Wellington
  18. Appl. Microbiol. Biotechnol. v.44 Rock phosphate solubilization by Aspergillus niger grown on sugar-beet waste medium. Vassilev, N.;M.T. Baca;M. Vassileva;I. Franco;R. Azcon https://doi.org/10.1007/BF00169958
  19. Soil. Biol. Biochem. v.31 Phosphate solubilization in solution culture by the soil fungus Penicillium radicum. Whitelaw, M.A.;T.J. Harden;K.R. Helyar https://doi.org/10.1016/S0038-0717(98)00130-8