Gas Transfer and Hemolysis Characteristics of a New Type Intravenous Lung Assist Device

혈관 내 신형 폐보조장치의 기체전달 및 용혈 특성

  • 김기범 (전북대학교 공과대학 화학공학부) ;
  • 권대규 (전북대학교 메카트로닉스연구센터) ;
  • 정경락 (공학연구원 공업기술연구센터) ;
  • 이삼철 (한려대학교 물리치료학과)
  • Published : 2003.04.01

Abstract

The purpose of this work was to assess and quantify whether the beneficial effects in long-term gas exchange at exciting frequency were obtained at different frequencies as well and then to develop a vibrating intravascular lung assist device(VIVLAD), for Patients suffering from acute respiratory distress syndrome(ARDS) or chronic respiratory problems. We investigate the optimal condition of the frequency band excited with new vibrator at state of limit hemolysis when blood hemolysis came to through a membrane vibration action. The experimental design and procedures were given for a device used to assess the effectiveness of membrane vibrations. Quantitative experimental measurements were performed to evaluate the performance of the device . and to identify membrane vibration dependence on blood hemolysis. We developed an analytical solution for the hydrodynamics of flow through a bundle of sinusoidally vibrated hollow fibers that is used to provide some insight into how wall vibrations might enhance the performance of the VIVLAD. In the result, it was measured that the effect of various excited frequencies in gas transfer rate and hemolysis from the maximum gas transfer rate at no vibration when the maximum gas transfer rates showed at module type 6, module type 6 consisted of 675 hollow fiber membranes The maximum oxygen transfer rate was caused by the occurrence of maximum amplitude and transfer of vibration to hollow fiber membranes when it was excited by the frequency band of 7Hz at each blood flow rate. because this frequency became the End mode resonance frequency of the flexible in blood flow. Also, when module type 6 was excited at an excited frequency of 7Hz. blood hemolysis was low. Therefore, we decided that the limit of hemolysis frequency is 7Hz . because maximum amplitude occurred at this frequency.

본 연구는 진동형 장치의 활용을 통해 혈관 내 폐 보조장치의 기체전달 효율을 향상시키고자 시도하였으며, 진동에 따른 혈액의 용혈 문제에 있어서 한계 용혈이 발생하는 영역을 선정하고자 하였다. 가진 주파수가 0 Hz일 때를 기준으로 하여 중공사 수의 변화에 따라 산소전달속도를 측정하였다. 최대의 산소전달속도를 나타내는 중공사 모듈에서 가진 주파수의 변화에 따른 산소전달속도를 측정하고 혈액의 용혈도를 측정하였다. 측정결과 액체 유속의 변화에 따라 최대 산소전달속도를 나타내는 중공사 모듈은 type 6으로 이때의 중공사 개수는 675개이다. 또한, 중공사를 가진하지 않았을 때 최대의 산소전달속도를 보여주는 모듈은 type 6이었다. 모듈 type 6의 가진 주파수의 변화에 따른 산소전달속도는 7 Hz에서 최대산소전달속도를 나타내었으며 최대산소전달속도를 나타내는 7 Hz의 가진 주파수에서의 혈액 용혈도를 측정한 결과 혈액의 용혈도는 낮았다. 그러므로 최대 흔들림이 일어나는 7 Hz를 한계 용혈 주파수로 결정할 수 있었다.

Keywords

References

  1. Pediatrics v.4 Extracorporeal circulation in neonatal resiratory failure: a prospective randomized study Bartlett, R. H.;Roloff, D. W.;cornell, R. G.;Andrews, A. F.;Dillon, P. W.;Zwischenberger, A. B.
  2. J. Intens. Care. Med. v.2 An economic analysis of extracorporeal membrane oxygenation Pearson, G. D.;Short, B. L.
  3. Can Med. Assoc. J. Neonatal congenital diaphragmatic hernia and extracorporeal membrane oxygenation Finder, N. N.;Tierney, A. J.;Hallgren, R.;Hayashi, A.;Peliowski, A.;Etches, P. C.
  4. ASAIO J. v.40 Changing criteria for the artificial lung: Historic controls on the technology of ECMO Campell, Terry G.
  5. ASAIO J. v.43 Development of a low flow resistance intravenous oxygenator Fedspiel, W. J.;Hout, M. S.;Hewitt, T. J.;Lund, L. W.;Heinrich, S. A.;Litwak, P.;Walters, F. R.;Reeder, G. D.;Borovetz, H. S.;Hattler, B. G.
  6. Ann. Biomed. Eng. v.26 A mathematical model of gas exchange in an intravenous membrane oxygenator Hewitt, Todd J.;Hattler, Brack. G.;Federspiel, William J.
  7. Trans. am. Soc. Artif. Intern. Organs v.35 Develoment of an intravacular lung assist device Vaslef, Steven N.;Mockros, Lyle F.;Anderson, Robert W.
  8. ASAIO J. v.42 Recent progress in engineering the Pittsburgh intravenous membrane oxygenator Federspiel, William J.;Hewitt, Todd J.;Hout, Mariah S.;Walters, Frank R. et al.
  9. AIChE J. v.42 no.7 Gas flow dynamics in hollow-flber- membranes Federspiel, William J.;William Jeffrey L.;Hattler, Brack G.
  10. Annals of Biomedical Engineering v.26 Enhancement of O2 and CO2 transfer through microporous hollow fiber by pressure cycling Nodelman;Vladislav;Baskaran;Harihara;Ultman, James S.
  11. ASAIO J. v.40 Design and evaluation of a new, low pressure loss, implantable artificial lung Vaslef, Steven N.;Cook, Keith E.;Leonard, Ronald J.;Mockros, Lyle F.;Anderson, Robert W.
  12. ASAIO J. v.45 Ex-vivotesting of the inravenous membrane oxygenator(IMO) Federspiel, William J.;Lund, L. W.;Bultman, J. A.;Wanant, S.;Matoney, J.;Golob, J. F.;Frankowski, B. J. Watach, M.;Litwak, P.;Hattler, B. G.
  13. Journal of Biomedical Engineering Research v.21 no.3 The evaluation of artificial lung using blood substitutes Lee, S. C.;Kim, K. B.;Hong, S. C.;Kim, M. H.;Jheong, G. R.
  14. U-M artificial lung showing promise, as need grows Clinical trials for lung transplant candidates on the horizon for early next year Kara Gavin
  15. PA:Americal Society of Testing and Materials v.F04 Recommended Practice for Assessment of Hemolysis in Continous Flow Blood Pump Nose Y
  16. Artificial Organs v.18 The Need for Standardizing the Index of Hemolysis Naito K;Mizuguchi K;Nose Y