Preparation of Polymeric Self-Assembly and Its Application to Biomaterials

  • Cho, Chong-Su (School of Agricultural Biotechnology, Seoul National University) ;
  • Park, In-Kyu (School of Agricultural Biotechnology, Seoul National University) ;
  • Nah, Jae-Woon (Department of Polymer Science and Engineering, Sunchon National University) ;
  • Toshihiro Akaike (Department of Biomolecular Engineering, Tokyo Institute of Technology)
  • Published : 2003.02.01

Abstract

The self-assembly of polymers can lead to supramolecular systems and is related to the their functions of material and life sciences. In this article, self-assembly of Langmuir-Blodgett (LB) films, polymer micelles, and polymeric nanoparticles, and their biomedical applications are described. LB surfaces with a well-ordered and layered structure adhered more cells including platelet, hepatocyte, and fibroblast than the cast surfaces with microphase-separated domains. Extensive morphologic changes were observed in LB surface-adhered cells compared to the cast films. Amphiphilic block copolymers, consisting of poly(${\gamma}$-benzyl L-glutamate) (PBLG) as the hydrophobic part and poly(ethylene oxide) (PEO) [or poly(N-isopropylacrylamide) (PNIPAAm)] as the hydrophilic one, can self-assemble in water to form nanoparticles presumed to be composed of the hydrophilic shell and hydrophobic core. The release characteristics of hydrophobic drugs from these polymeric nanoparticles were dependent on the drug loading contents and chain length of the hydrophobic part of the copolymers. Achiral hydrophobic merocyanine dyes (MDs) were self-assembled in copolymeric nanoparticles, which provided a chiral microenvironment as red-shifted aggregates, and the circular dichroism (CD) of MD was induced in the self-assembled copolymeric nanoparticles.

Keywords

References

  1. Science v.254 G. M. Whitesides;J. P. Mathias;C. T. Seto https://doi.org/10.1126/science.1962191
  2. Angew. Chem. Int. Ed. Engl. v.27 H. Ringforf;B. Schlarb;J. Venzmer https://doi.org/10.1002/anie.198801131
  3. J. Am. Chem. Soc. v.57 K. B. Blodgett https://doi.org/10.1021/ja01309a011
  4. Techniques of Chemistry v.1 H. Kuhn;D. Mobius;H. Bucher;A. Weissberger(ed.);B. W. Rossiter(ed.)
  5. J. Polym. Sci., Part C : Polym. Lett. v.28 C. S. Cho;R. Nagata;A. Yagawa;S. Takahashi;M. Kunou;T. Akaike
  6. J. Colloid Interf. Sci. v.62 D. W. Goupilk;F. C. Goodrich https://doi.org/10.1016/0021-9797(77)90075-3
  7. Makromol. Chem. v.191 C. S. Cho;S. W. Kim;T. Komoto https://doi.org/10.1002/macp.1990.021910423
  8. J. Colloid Interf. Sci. v.137 C. S. Cho;S. C. Song;M. Kunou;T. Akaike https://doi.org/10.1016/0021-9797(90)90064-U
  9. Thin Solid Films v.264 C. S. Cho;A. Kabayashi;M. Goto;T. Akaike https://doi.org/10.1016/0040-6090(95)06506-7
  10. Artificial Organs(Suppl.) v.5 T. Okano;K. Kataoka;Y. Sakurai;M. Shimada;T. Akaike;I. Shinohara
  11. J. Biomed. Mat. Res. v.24 C. S. Cho;T. Takayama;M. Konou;T. Akaike https://doi.org/10.1002/jbm.820241008
  12. J. Biomed. Mat. Res. v.27 C. S. Cho;T. Kataoka;T. Akaike https://doi.org/10.1002/jbm.820270209
  13. J. Biomed. Mat. Res. v.32 C. S. Cho;A. Kobayashi;M. Goto;K. H. Park;T. Akaike https://doi.org/10.1002/(SICI)1097-4636(199611)32:3<425::AID-JBM16>3.0.CO;2-F
  14. J. Biomater. Sci. Polym. Ed. v.4 G. R. Llanos;M. V. Sefton https://doi.org/10.1163/156856293X00069
  15. J. Biomater. Sci. Polym. Ed. v.3 A. Kobayashi;K. Kobayashi;T. Akaike https://doi.org/10.1163/156856292X00466
  16. J. Biomater. Sci. Polym. Ed. v.6 A. Kobayashi;M. Goto;K. Kobayashi;T. Akaike
  17. J. Biomater. Sci. Polym. Ed. v.7 C. S. Cho;M. Goto;A. Kobayashi;K. Kobayashi;T. Akaike https://doi.org/10.1163/156856296X00589
  18. J. Biomater. Sci. Polym. Ed. v.11 A. Higuchi;S. Tamiya;T. Tsubomura;A. Katoh;C. S. Cho;T. Akaike;M. Hara https://doi.org/10.1163/156856200743625
  19. Angew. Chem. Int. Ed. Engl. v.31 T. Kunitake https://doi.org/10.1002/anie.199207091
  20. Macromolecules v.25 X. F. Zhong;S. K. Varsheny;A. Eisenberg https://doi.org/10.1021/ma00052a014
  21. Macromolecules v.26 D. Izzo;C. M. Marque https://doi.org/10.1021/ma00078a012
  22. J. Control. Release v.24 K. Kataoka;G. S. Kwon;M. Yokohama;T. Okano;Y. Sakurai https://doi.org/10.1016/0168-3659(93)90172-2
  23. Korea Polym. J. v.6 J. B. Cheon;Y. I. Jeong;C. S. Cho
  24. J. Control. Release v.51 Y. I. Jeong;J. B. Cheon;S. H. Kim;J. W. Nah;Y. M. Lee;Y. K. Sung;T. Akaike;C. S. Cho https://doi.org/10.1016/S0168-3659(97)00163-6
  25. J. Phys. Chem. v.90 R. Nagarajan;K. Ganesh https://doi.org/10.1063/1.456390
  26. Macromolecules v.24 M. Wilhelm;C. L. Zhao;Y. Wang;R. Xu;M. A. Winnik;J. L. Mura;G. Riess;M. D. Croucher https://doi.org/10.1021/ma00005a010
  27. Macromol. Rapid Commun. v.18 C. S. Cho;J. B. Cheon;Y. I. Jeong;I. S. Kim;S. H. Kim;T. Akaike https://doi.org/10.1002/marc.1997.030180502
  28. Int. J. Pharma. v.188 Y. I. Jeong;J. W. Nah;H. C. Lee;S. H. Kim;C. S. Cho https://doi.org/10.1016/S0378-5173(99)00202-1
  29. Polymer v.41 T. W. Chung;T. Akaike;Y. H. Park;C. S. Cho https://doi.org/10.1016/S0032-3861(00)00021-5
  30. Macromolecules v.33 T. W. Chung;B. J. Kim;S. Y. Park;T. Akaike;J. W. Nah;C. S. Cho https://doi.org/10.1021/ma000480e
  31. Thin Solid Films v.327 Y. Hirano;J. Kawata;Y. E. Miura;M. Sugi;T. Ishii https://doi.org/10.1016/S0040-6090(98)00666-X