Multiple-Layered Colloidal Assemblies via Dipping Method with an External Electric Field

  • Im, Sang-Hyuk (Department of Chemical & Biomolecular Engineering Korea Advanced Institute of Science and Technology) ;
  • Park, O-Ok (Department of Chemical & Biomolecular Engineering Korea Advanced Institute of Science and Technology) ;
  • Kwon, Moo-Hyun (Department of Chemical Engineering, Woosuk University)
  • Published : 2003.04.01

Abstract

When using the dipping method for crystal formation, mono-layered colloidal crystal structures depend upon the lift-up rate of a glass substrate. The mono-layered colloidal crystals showed the highest quality when the glass substrate was raised at a rate of 3 mm/min at 25 $^{\circ}C$ in a 1 wt% polystyrene colloidal suspension (ethanol medium). In addition, in order to obtain multiple-layered colloidal crystals, an external electric Held was introduced. Multiple-layered colloidal crystals were successfully obtained via this method. The colloidal particles were well ordered over large areas and assembled into a homogeneous structure.

Keywords

References

  1. Langmuir v.18 S. Okuyama;S. I. Matsushita;A. Fujishima https://doi.org/10.1021/la011107i
  2. J. Mater. Chem. v.11 B. van Duffel;R. H. A. Ras;F. C. De Scheyver;R. A. Schoonheydt https://doi.org/10.1039/b102162l
  3. Adv. Mater. v.13 L. Vogelaar;W. Nijada;H. A. van Wolferen;R. M. de Ridder;F. B. Segerink;E. F. L. Kuipers;N. F. van Hulst https://doi.org/10.1002/1521-4095(200110)13:20<1551::AID-ADMA1551>3.0.CO;2-V
  4. Adv. Funct. Mater. v.12 M. N. Shkunov;X. V. Vardeny;M. C. DeLong;R. C. Poloson;A. A. Zakhidov;R. H. Baughman https://doi.org/10.1002/1616-3028(20020101)12:1<21::AID-ADFM21>3.0.CO;2-S
  5. Langmuir v.15 S. H. Park;Y. Xia https://doi.org/10.1021/la980658e
  6. J. Opt. Soc. Am. v.14 P. Tran https://doi.org/10.1364/JOSAB.14.002589
  7. Nature v.361 N. D. Denkov;O. D. Velev;P. A. Kralchevsky;I. B. Ivanov;H. Yoshimura;K. Nagayama
  8. Langmuir v.8 N. D. Denkov;O. D. Velev;P. A. Kralchevsky;I. B. Ivanov;H. Yoshimura;K. Nagayama https://doi.org/10.1021/la00048a054
  9. Langmuir v.11 E. Adachi;A. S. Dimitrov;K. Nagayama https://doi.org/10.1021/la00008a021
  10. Langmuir v.12 A. S. Dimitrov;K. Nagayama https://doi.org/10.1021/la9502251
  11. Langmuir v.11 M. Yamaki;J. Jigo;K. Nagayama
  12. Adv. Mater. v.10 H. Miguez;F. Meseguer;C. Lopez;A. Blanco;J. Moya;J. requena; A. Mifsud;V. Fornes https://doi.org/10.1002/(SICI)1521-4095(199804)10:6<480::AID-ADMA480>3.0.CO;2-Y
  13. Chem. Mater. v.11 P. Jiang;J. F. Bertone;K. S. Hwang;V. L. Colvin https://doi.org/10.1021/cm990080+
  14. Nature v.414 Y. A. Vlasov;X.-Z. Bo;J. C. Sturm;D. J. Norris https://doi.org/10.1038/35104529
  15. Chem. Mater. v.12 A. L. Rogach;N. A. Kotov;D. S. Koktysh;J. W. Ostrander;G. A. Ragoisha https://doi.org/10.1021/cm000274l
  16. Adv. Mater. v.14 S. H. Im;Y. T. Lim;D. J. Suh;O O. Park https://doi.org/10.1002/1521-4095(20021002)14:19<1367::AID-ADMA1367>3.0.CO;2-U
  17. Chem. Mater. v.14 B. Griesebock;M. Egen;R. Zentel https://doi.org/10.1021/cm025613k
  18. Chem. Mater. v.13 G. R. Yi;J. H. Moon;S.-M. Yang https://doi.org/10.1021/cm0102584
  19. J. Polym. Sci., Polym. Chem. v.30 J. H. Kim;M. Chainey;M. S. El-Aasser;J. W. Vanderhoff https://doi.org/10.1002/pola.1992.080300201
  20. Korea Polym. J. v.5 K. Chengyou;L. Huihui;Y. Qing
  21. Korea Polym. J. v.2 M. S. Park
  22. Langmuir v.18 L. Shmuvlovich;A. Q. Ahen;H. A. Stone https://doi.org/10.1021/la011484v
  23. Nature v.389 R. D. Deegan;O. Bakajin;T. F. Dupont;G. Huber;S. R. Nagel;T. A. Witten https://doi.org/10.1038/39827
  24. Phys. Rev. E. v.61 R. D. Deegan
  25. Phys. Rev. E v.61 R. M. Amos;J. G. Rarity;P. R. Tapster;T. J. Shepherd https://doi.org/10.1103/PhysRevE.61.2929