Electrical Properties and Electromagnetic Shielding Effectiveness of Milled Carbon Fiber/Nylon Composites

분쇄형 탄소 섬유/나일론 복합재료의 전기적 성질과 전자파 차폐 효율

  • 김창제 (고려대학교 재료공학과) ;
  • 최형도 (한국전자통신연구원 전자파 환경연구팀) ;
  • 서광석 (고려대학교 재료공학과) ;
  • 윤호규 (고려대학교 재료공학과)
  • Published : 2003.05.01

Abstract

DC and AC electrical conductivity and electromagnetic interference shielding effectiveness of milled carbon fiber/nylon composites were investigated with the kind of nylon matrix. Percolation transition at which the conductivity is sharply increased was observed at about 7 vol% of milled carbon fiber. Nylon 46 as a matrix was more effective to obtain high electrical conductivity than nylon 6, and the difference in conductivity was occurred by the treatment of coupling agent. Frequency dependence of AC conductivity could be explained by relaxation phenomenon at just below percolation and resonance phenomenon at 40 vol% of carbon fiber, respectively. Negative temperature coefficient phenomenon was found in all composites. Electromagnetic interference shielding effectiveness was increased with the concentration of carbon fiber. At a high conductivity region the return loss was more dominant to the total shielding effectiveness than the absorption loss.

나일론의 종류에 따른 분쇄형 탄소 섬유/나일론 복합재료의 직류 및 교류 전도도, 그리고 전자기파 차폐 효율을 조사하였다. 탄소 섬유의 함량이 약 7 vol%에서 전도도가 급격하게 증가하는 percolation 전이가 관찰되었다. 나일론 46을 기저 수지로 하였을 경우 더욱 높은 전기 전도도를 나타냈으며, 계면 결합제의 적용 여부에 따라 전도도의 차이가 발생하였다. 온도증가에 따라 전도도가 증가하는 negative temperature coefficient 현상을 나타냈으며, percolation 전후의 탄소 섬유 함량에서의 주파수에 따른 전도기구를 완화와 공진 현상으로 각각 달리 설명할 수 있었다. 회로망 분석기를 통하여 측정한 전자기파 차폐 효율은 전도도 및 탄소 섬유의 함량에 따라 증가하였으며, 높은 전도도 영역에서의 전자기파 차폐 효율은 반사에 의한 차폐가 지배적이었다.

Keywords

References

  1. A Handbook on Electrical Nosie and EMI Specifications D.R.J.White
  2. Fiber-Reinforced Compasite P.K.Mallick
  3. Advanced Polymer Composites: Princples and Applications B.Z;Jang
  4. Plastics Materials J.A.Brydson
  5. Polymer Materials for Electronic Applications E.D.Feit;C.W.Wilkins
  6. Composite Application: The Role Of Matrix and Interface T.L.Vigo;B.J.Kinzig
  7. Carbon v.39 D.D.L.Chung https://doi.org/10.1016/S0008-6223(00)00184-6
  8. J. Appl. Polym. Sci. v.88 M.L.Clingerman;E.H.Weber;J.A.King;K.H.Schulz https://doi.org/10.1002/app.11938
  9. J. Appl. Polym. Sci. v.80 N.C.Das;T.K.Chaki;D.Khastgir;A.Chakraborty
  10. J. Appl. Polym. Sci. v.83 D.Khastgir.and A.Chakraborty M.L.Clingerman;J.A.King;K.H.Schulz;J.D.Meyers https://doi.org/10.1002/app.10014
  11. Mod. Plast. v.69 P.Mapleston
  12. Short Fiber-Polymer Composites S.K.De and J.R. White, Editors P.B.Jana,A.K.Mallick; S.K.De;S.K.De(ed.);J.R.White(ed.)
  13. J. Polym. Sci., Part B: Polym. Phys. v.37 S.H.Foulger https://doi.org/10.1002/(SICI)1099-0488(19990801)37:15<1899::AID-POLB14>3.0.CO;2-0
  14. Macromol. v.28 F.Gubbles;S.Blacher,E.Vanlathem;R.Jerome;R.Deltour;F.Brouers;Teyssie https://doi.org/10.1021/ma00109a030
  15. Ann. Chim. Sci .Mat. v.23 K.Benaboud;M.E.Achour;F.Carmona;L.Salome https://doi.org/10.1016/S0151-9107(98)80082-2
  16. Phys. Rev. Lett. v.78 L.J.Adriaanse;J.A.Reedijk;P.A.A.Teunissen;H.B.Brom;M.A.J.Michels;J.M.C. https://doi.org/10.1103/PhysRevLett.78.1755
  17. Carbon Black-Polymer Composites E.K.Sichel
  18. Electronic Processes in Noncrystalline Materials N.F.Mott;E.A. Davis
  19. Phys. Rev. B v.33 Y.Song;T.N.Noh;S.I.Lee;J.R.Gaines https://doi.org/10.1103/PhysRevB.33.904
  20. IEEE Trans;Comp.Pack. Manuf. Technol. Part A v.17 C.H.Lai;T.Y.Tseng https://doi.org/10.1109/95.296415
  21. Dietectrics and Waves A,R.von Hippel
  22. Phys.Stat.Sol. A v.185 S.A.El-Hassan;M.Hammad https://doi.org/10.1002/1521-396X(200106)185:2<413::AID-PSSA413>3.0.CO;2-0
  23. J. Phys: Condens. Matter. v.9 S.Hazra;A.Ghosh https://doi.org/10.1088/0953-8984/9/19/017
  24. Electromag. Compat. v.30 R.B.Schulz;V.C.Plantz;D.R;Brush,IEEE Trans https://doi.org/10.1109/15.3297
  25. Compos. v.31 N.C.Das;D.Khastgir;T.K.Chaki;A.Chakraborty https://doi.org/10.1016/S1359-835X(00)00064-6