DOI QR코드

DOI QR Code

Investigation of Amplifying Mechanism in an t-Band Erbium-Doped Fiber Amplifier Pumped by a 980 nm Pump

  • Lee, Dong-Han (Department of Physics, Chungnam National University) ;
  • Lee, Han-Hyub (Department of Physics, Chungnam National University) ;
  • Oh, Jung-Mi (Department of Physics, Chungnam National University) ;
  • Kim, Byung-Jun (Department of Physics, Chungnam National University)
  • Received : 2003.04.11
  • Published : 2003.06.01

Abstract

For a more detailed understanding of the mechanism of an L-band erbium-doped fiber amplifier, we investigated 980 nm absorption, signal amplification and forward and backward amplified spontaneous emission along the erbium-doped fiber. In addition, we compared performances of the erbium-doped fiber amplifier with and without a fiber Bragg grating.

Keywords

References

  1. H. S. Chung, H. B. Choi, M. S. Lee, D. Lee, N. K. Park, and S. J. Ahn, “Demonstration of 52 nm gain bandwidth over 2400 km (540 dB loss) with gain equalized low noise wide band EDFA's,” IEEE Photon. Technol. Lett., vol. 12, pp. 329-331, 2000. https://doi.org/10.1109/68.826930
  2. G. Vareille, F. Pitel, and J.F. Marcerou, “3.08 Tb/s (77 x 42.7 Gb/s) transmission over 1200 km of nonzero dispersion-shifted fiber with 100 km spans using C and L-band distributed raman amplification,” in Optical Fiber Communication Conference'2001, Optical Society of America, Anaheim, USA, Postdeadline paper, PD22-1, 2001.
  3. B. Zhu, L. Leng, L.E. Nelson, Y. Qian, S. Stulz, C. Doerr, L. Stulz, S. Chandrasekar, S. Radic, D. Vengsarkar, Z. Chen, J. Park, K. Feder, H. Thiele, J. Bromage, L. Gruner-Nielsen, and S. Knudsen, “3.08 Tb/s (77 x 42.7 Gb/s) transmission over 1200 km of non-zero dispersion-shifted fiber with 100-km spans using C and L-band distributed raman amplification,” in Optical Fiber Communication Conference' 2001, Optical Society of America, Anaheim, USA, Postdeadline paper, PD23-3, 2001.
  4. H. S. Chung, H. B. Choi, M. S. Lee, D. Lee, S. J. Ahn, B. S. Choi, H. M. Moon, and K. H. Lee, “Optional of EDFA's for WDM long-haul transmission systems: gain flattening with or without a gain equalizer,” J. Opt. Soc. Korea, vol. 4, No. 1, pp. 14-18, 2000. https://doi.org/10.3807/JOSK.2000.4.1.014
  5. I. P. Byriel, B. Palsdottir, M. Andrejco, and C.C. Larsen, “Silica based erbium doped fiber extending the L-band to 1620+ nm,” in European Conference on Optical Communication'2001, Amsterdam, Netherlands, pp. 232-234, 2001. https://doi.org/10.1109/ECOC.2001.988897
  6. H. S. Chung,M. S. Lee, D. Lee, N. K. Park, and D. J. DiGiovanni, “Low noise, high efficiency L-band EDFA with 980 nm pumping,” Electron. Lett., vol. 35, no. 13, pp. 1099-1100, 1999. https://doi.org/10.1049/el:19990750
  7. Simulators, for example OASIX 3.0 (Lucent Technologies), do not give correct ASE spectra for L-band EDFAs.
  8. P. C. Becker, N. A. Olsson, and J. R. Simpson, Erbium-Doped Fiber Amplifiers Fundamentals and Technology (Academic Press, San Diego, USA, 1999), Chapter 6.
  9. R. di Muro, P.N. Kean, S.J. Wilson, and J. Mun, “Dependence of L-band amplifier efficiency on pump wavelength and amplifier design,” in Optical Fiber Communication Conference'2000, Optical Society of America, Baltimore, USA, vol. 2, pp. 120-122, 2000. https://doi.org/10.1109/OFC.2000.868259
  10. H. Ono, M. Yamada, T. Kanamori, S. Sudo, and Y. Ohishi, “1.58$\mu$m band gain-flattened erbium-doped fiber amplifiers for WDM transmission systems,” J. Lightwave Technol., vol. 17, no. 3, pp. 490-496, 1999. https://doi.org/10.1109/50.749390
  11. Y. Zhang, X. Liu, J. Peng, X. Feng, and W. Zhang, “Wavelength and power dependence of injected Cband laser on pump conversion efficiency of L-band EDFA,” IEEE Photon. Technol. Lett., vol. 14, no. 3, pp. 290-292, 2002. https://doi.org/10.1109/68.986789
  12. J. M. Oh, H. B. Choi, D. Lee, S. J. Ahn, S. J. Jung, and S. B. Lee, “Demonstration of a low-cost flat-gain L-band erbium-doped fiber amplifier by incorporating a fiber Bragg grating,” IEEE Photon. Technol. Lett., vol. 14, no. 9, pp. 1258-1260, 2002. https://doi.org/10.1109/LPT.2002.801101

Cited by

  1. Measurement of oxygen isotope ratio using tunable diode laser absorption spectroscopy vol.15, pp.1, 2004, https://doi.org/10.3807/KJOP.2004.15.1.001
  2. Spectroscopy of acetylene (13C2H2) using a tunable erbium-doped fiber ring laser vol.14, pp.6, 2003, https://doi.org/10.3807/KJOP.2003.14.6.674
  3. Strong Optical Bistability in a Simple<tex>$L$</tex>-Band Tunable Erbium-Doped Fiber Ring Laser vol.40, pp.4, 2004, https://doi.org/10.1109/JQE.2004.824699
  4. Widely tunable thulium-doped fiber laser anchored on 50-GHz ITU-T grid in S/S+ band vol.15, pp.1, 2004, https://doi.org/10.3807/KJOP.2004.15.1.017
  5. Effective Suppression of Signal-Wavelength Dependent Transients in a Pump-Controlled<tex>$L$</tex>-Band EDFA vol.16, pp.6, 2004, https://doi.org/10.1109/LPT.2004.827098
  6. An Extended L-band Erbium-doped Fiber Amplifier to Amplify 1625 nm OTDR Signal for a Long Distance Monitoring System vol.16, pp.5, 2005, https://doi.org/10.3807/KJOP.2005.16.5.411