DOI QR코드

DOI QR Code

Single mode yield analysis of index-coupled DFB lasers above threshold for various facet reflectivity combinations

Index-coupled DFB 레이저의 여러 가지 양 단면 반사율 조합에 따른 문턱 전류 이상에서 단일 모드 수율 해석

  • 김상택 (숭실대학교 정보통신전자공학부) ;
  • 전재두 (숭실대학교 정보통신전자공학부) ;
  • 김부균 (숭실대학교 정보통신전자공학부)
  • Published : 2003.06.01

Abstract

We have calculated the single mode yield of index-coupled (IC) DFB lasers above threshold for several kL, and facet reflectivity combinations, and investigated the correlation between those results and the single mode yield as a function of f number at the threshold. As a result, there is little correlation between the single mode yield above threshold and the single mode yield as a function of f number at the threshold. The single mode yields above threshold for kL of 0.8 and 1.25 is larger than those for kL, of 2 and 3 due to the spatial hole burning effect. Also, we have investigated the effect of the reflectivity of the AR facet on the single mode yield for AR-HR and AR-CL combinations. For AR-HR combinations, the single mode yield increases as the reflectivity of the AR facet decreases. However, for AR-CL combinations, the reflectivity of the AR facet for the largest single mode yield exists. In the single mode yield calculations for IC DFB lasers in this paper, the single mode yield for kL of 0.8 with AR(1%)-HR combination is largest above threshold.

Index-coupled(IC) DFB 레이저에서 여러 가지 kL과 양 단면 반사율 조합에 대하여 문턱 전류 이상에서 주입 전류에 따른 단일 모드 수율을 구하였고 그 결과를 문턱 전류에서 f number에 따른 단일 모드 수율과의 관련성에 대하여 검토하였다. 그결과 문턱 전류 이상에서 단일 모드 수율과 문턱 전류에서 f number에 따른 단일 모드 수율과의 관련성이 매우 적음을 알수 있었다. 문턱 전류 이상에서 kL이 0.8과 1.25인 경우가 kL이 2와 3인 경우에 비하여 SHB 현상이 작아 단일 모드 수율이 큼을 알 수 있었다 또한 양 단면 반사율 조합이 AR-HR과 AR-CL에 대하여 AR 단면의 반사율이 단일 모드 수율에 미치는 영향에 대하여 살펴보았다. 양 단면 반사율 조합이 AR-HR인 경우 AR단면의 반사율이 작을수록 단일 모드 수율은 크게 나타났다. 반면에 AR-CL의 경우 최대의 단일 모드 수율을 나타내는 최적의 AR단면의 반사율이 존재하였다. 본 논문에서 수행한 IC DFB 레이저의 단일 모드 수율 계산에서는 kL이 0.8이고 양 단면 반사율 조합이 AR(1%)-HR인 경우가 문턱전류 이상에서 단일 모드 수율이 가장 컸다.

Keywords

References

  1. IEEE J. Quantum Electron. v.33 no.12 Fluctuations of the Laser Characteristics and the Effect of the Index-Coupling Component in the Cain-Coupled DFB Laser Nobuhiko Susa https://doi.org/10.1109/3.644108
  2. IEEE J. Quantum Electron. v.32 no.11 Effect of Grating Phase Difference on Single-Mode Yield in Complex-Coupled DFB Lasers with Gain and Index Gratings Kee-Young Kwon https://doi.org/10.1109/3.541680
  3. IEEE J. Quantum Electron. v.27 no.6 Gain-Coupled DFB lasers verse index-coupled and phase-shifted DFB lasers: A comparison based in spatial hole burning corrected yield K.David;G.Morthier;P.Vankwikelberge;R.G.Baets;T.Wolf;B.Borchert https://doi.org/10.1109/3.89938
  4. IEEE J. Quantum Electron. v.25 no.6 Yield Analysis of SLM DFB Lasers with an Axially-Flattened Internal Field Jun-Ichi Kinoshita;Kenji Matsumoto https://doi.org/10.1109/3.29264
  5. IEEE J. Quantum Electron. v.25 no.6 Yield and Device Characteristics of DFB Lasers: Statistics and Novel Coating Design in Theory and Experiment PeterP.G.Mols;P.I. Kuindersma;W.V. Es-Spiekman;IngridA. F. Baele https://doi.org/10.1109/3.29261
  6. IEEE Photon. Technol. Lett. v.5 no.11 Single-Mode Yield Analysis of Party Gain-Coupled Multiquantum-Well DFB Lasers G.P.Li;T.Makino https://doi.org/10.1109/68.250037
  7. IEEE Photon. Technol. Lett. v.4 no.4 Highly Efficient Single Longitudinal-Mode Oscillation Capability of Gain-Coupled Distributed Feedback Semicondutor Laser-Advantage of Asymmetric Facet Coating Y.Nakano;Y.Uchida;K.Tada https://doi.org/10.1109/68.127196
  8. J. Lightwave Technol. v.13 no.12 Spectral Characteristics of Distributed Feedback Laser Diodes with Distributed Coupling Coefficient B.S.K. Lo;H.Ghafouri-Shiraz https://doi.org/10.1109/50.365207
  9. IEEE J. Quantum Electron. v.27 no.4 A Tractable Above-Threshold Model for the Design of DFB and Phase-Shifted DFB Lasers I.Orfanos;T.Sphicopoulos;A.Tsigopoulos;C.Caroubalos https://doi.org/10.1109/3.83329
  10. J. Lightwave Technol. v.15 no.7 Properties of Loss-Coupled Distributed Feedback Laser Arrays for Wavelength Division Multiplexing Systems S.Hansmann;K.Dahlhof;B.E.Kempf;R.Gobel;E.Kuphal;B.Hubner;H.Burkhard;A.Krost;K.Schatke;D.Bimberg https://doi.org/10.1109/50.596965
  11. IEEE. J. Select. Topics Quantum Electron. v.3 no.2 Impact of Random Facet Phases on Modal Properties of Partly Gain-Coupled Distributed-Feedback Lasers J.Hong;K.W.Leong;T.Makino;J.Evans;X.Li;W.P. Huang https://doi.org/10.1109/2944.605707
  12. Microwave and Optical Technology Letters v.27 no.6 Systematic Comparisions of the Effects of the Linewidth Enhancement factor, the Confinement factor, the Internal loss and the Cavity length on the Above Threshold Characteristics of Quarter Wavelength Shifted DFB Lasers Hong-Seok Lee;Hong Kuk Kim;Boo-Gyoun Kim;Byoungho Lee https://doi.org/10.1002/1098-2760(20001220)27:6<396::AID-MOP9>3.0.CO;2-E
  13. J. Lightwave Technol. v.16 no.6 The Symmetry of the Amplified Spontaneous Emission Spectrum in Complex-Coupled DFB Lasers Boo-Gyoun Kim;Sung-Chan Cho;Ali Shakouri https://doi.org/10.1109/50.681467
  14. Proceeding of SPIE, APOC 2001 v.4581 Manufacturing and testing consideration for various DWDM Components Y.Y.Wang;X.F. Chen https://doi.org/10.1117/12.445066
  15. J. of Lightwave Tech. v.18 no.6 A new lensed-fiber configuration employing cascaded GI-fiber chips K.Shiraishi;S.-I.Kuroo https://doi.org/10.1109/50.848386
  16. Appl. Opt. v.22 Dual GRIN lens wavelength multiplexer B.D.Metcalf https://doi.org/10.1364/AO.22.000455
  17. Appl. Opt. v.19 Aberration losses of the microoptic directional coupler K.Thyagarajan;Aruna Rohra;A.K. Ghatak https://doi.org/10.1364/AO.19.001061
  18. 기하광학 이상수
  19. Numerical Mathematical Analysis JamesB.Scarborough
  20. System and method for alining optical fiber collimator, US Patent 6168319 KurtR.Francis