Product Quality and Extension of Shelf-life of Low-fat Functional Sausages Manufactured with Sodium Lactate and Chitosans during Refrigerated Storage

젖산나트륨과 키토산을 첨가한 저지방 기능성 소시지의 냉장 저장 중의 품질 및 저장성 증진 효과

  • 국성호 (전남대학교 동물자원학부 및 생물공학연구소) ;
  • 최순희 (전남대학교 동물자원학부 및 생물공학연구소) ;
  • 강상미 (전남대학교 동물자원학부 및 생물공학연구소) ;
  • 박성용 (전남대학교 동물자원학부 및 생물공학연구소) ;
  • 진구복 (전남대학교 동물자원학부 및 생물공학연구소)
  • Published : 2003.06.01

Abstract

This study was peformed to evaluate physico-chemical and textural properties, and shelf-life effect of low-fat functional sausages(LFFS) manufactured with sodium lactate(SL), lac color and various molecular weights of chitosans(low=1.5 kDa, medium=30∼40 kDa and high=200 kDa) during storage at 4$^{\circ}C$ for 8 weeks. LFFS had a pH range of 6.39∼6.50, 76∼78% moisture, <2% fat, 14∼15% protein. The combination of SL and low molecular weight(MW) of chitosan improved water holding capacity(WHC), however those of SL and medium MW of chitosan reduced WHC. Vacuum purge(VP) reduced with increased MW of chitosans during refrigerated storage. The addition of chitosans reduced the lightness and yellowness, but increased the redness values, which was comparable to the sodium nitrite concentration between 75 and 150 ppm. LFFS containing SL and medium MW of chitosan increased most texture profile analysis(TPA) values, as compared to controls with 75 and 150 ppm. The addition of SL in LFFS retarded the microbial growth for Listeria monocytogenes, however no synergistic effect with the addition of chitosans were observed. E coli O157:H7 and Salmonella typhimurium reduced during refrigerated storage, regardless of SL and chitosan treatments. Increased storage time increased values for VP, yellowness and textural properties. These results indicated that the combination of SL and various MW of chitosans affected the functional and textural properties, and inhibited the microbial growth for LM effectively. In addition, 0.5% lac color as a replacer for sodium nitrite improved the color development, resulting in similar hunter color values, which was comparable to the sodium nitrite concentration between 75 and 150 ppm.

본 연구는 젖산나트륨과 분자량에 따른 키토산을 저지방 기능성 소시지의 제조 시 첨가하여 냉장 저장 중 물리화학적 및 조직적인 성상과 항균효과에 미치는 영향을 조사하기 위해서 실시하였으며 락색소를 첨가하여 아질산염과 대체할 수 있는 발색효과를 나타내는지 알아보기 위하여 실시하였다. 제조한 저지방 기능성 소시지의 일반성분을 분석한 결과 수분 76-78, 지방 1~2 그리고 단백질은 14~15%의 수준이었다. 각 처리구별 pH는 6.37~6.50 범위였으며 냉장 저장중의 뚜렷한 변화는 보이지 않았다. 중분자 키토산을 첨가한 처리구의 보수력이 저분자와 고분자 키토산 처리구보다 낮았으나 저분자와 고분자 키토산의 처리구 사이에서는 차이를 보이지 않았으며 저장기간 중에 보수력은 차이가 없었다 (p>0.05). 젖산나트륨의 첨가에 의한 진공감량은 증가하였으나 0.3%의 키토산 첨가에 의하여 진공감량의 차이는 상쇄되었고, 냉장 저장 중의 진공감량은 대체적으로 증가하였다. 키토산 첨가에 의한 명도와 황색도가 낮았으며 락색소를 0.05% 첨가한 처리구의 적색도는 아질산염 75와 150 ppm 사이였다. 냉장 저장기간 동안에 명도와 적색도는 차이가 없었으며 황색도는 저장기간이 길어질수록 증가하는 경향을 보였다. 젖산나트륨에 저분자와 중분자 키토산을 각각 첨가한 처리구는 아질산염을 75와 150 ppm을 첨가한 대조구에 비하여 경도와 탄력성에서 높았으며 중분자의 경우 탄력성, 검성 및 저작성에서 다른 처리구들과 뚜렷한 차이를 보였다(p<0.05). 젖산나트륨의 첨가에 의한 Listeria monocytogenes에 대한 유의차는 있었으나(p<0.05) 키토산 첨가에 의한 상승효과는 없었다. 저장기간 중에 아질산염 75나 150 ppm을 첨가한 처리구의 경우 3주후에 $10^{6}$ CFU/g이상을 기록한 반면, 젖산나트륨과 키토산을 첨가할 경우 4~5주 후에 $10^{6}$CFU/g이상이 나타나 저장기간을 1~2주간 연장시킬 수 있었다. 하지만 Salmonella typhimurium과 E. coli O157:H7의 병원성 미생물은 냉장조건의 저장기간 중에 감소하는 추세를 보임으로써 저지방 기능성 소시지의 경우 냉장저장이 필수적이라고 사료된다. 결론적으로 젖산나트륨과 키토산을 첨가한 처리구의 항 미생물적 효과는 아질산염 75나 150ppm을 첨가한 처리구보다 훨씬 높았고 젖산나트륨에 중분자 키토산을 첨가한 처리구는 대부분의 조직적 성상에서 다른 처리구들보다 높았으며, 락색소에 의한 발색효과는 아질산염 75에서 150 ppm 사이로서 일부는 대체가 가능하였으나 완전 대체는 불가한 것으로 나타났다.

Keywords

References

  1. Anders, P. J., Milkowski, A. L., and Cereveny, J. G. (1987) A foodstuff containing a lactate salt. European Patent Application. EP 0 230 122 A2
  2. AOAC (1995) Official Methods of Analysis. 16th edition AOAC International, Washington, DC
  3. Bloukas, J. G., Paneras, E. D., and Fournitzis, G. C. (1997) Sodium lactate andprotective culture effects on quality characteristics and shelf-life of low-fat frankfurters produced with olive oil. Meat Sci. 45(2), 223-238 https://doi.org/10.1016/S0309-1740(96)00108-8
  4. Bourne, M. C. (1978) Texture profile analysis. Food Technol. 32(7), 62-66, 72
  5. Cassens, R. G., Greaser, M. L., Ito, T., and Lee, M. (1979) Reaction of nitrite in meat. Food Technol. 19, 46-57
  6. Chin, K. B. and Choi, S. H. (2001) Evaluation of the addition of sodium lactate and a fat replacer in very low-fat bo1ogna(mode1 system) on the product quality and shelf-life effect during refrigerated storage. J. Korean Soc. Food Sci. Nutr. 30(5), 858-864
  7. Chin, K. B. and Chung, B. K. (2002) Development of low-fat meat processing technology using interactions between meat protein and hydrocolloids. I . Optimization of interactions between meat proteins and hydrocolloids by model study. J. Korean Soc. Food Sci. Nutr. 31(3), 438-444 https://doi.org/10.3746/jkfn.2002.31.3.438
  8. Chin, K. B. and Lee, H. C. (2002) Development of low-fat meat processing technology using interactions between meat protein and hydrocolloids. II. Development of low-fat sausages using the results of model study. J. Korean Soc. Food Sci. Nutr. 31(4), 629-635 https://doi.org/10.3746/jkfn.2002.31.4.629
  9. Choi, S. H. and Chin, K. B. (2002) Development of low-fat comminuted sausage manufactured with various fat replacer similar textural characteristics to those with a regular fat counterpart. Korean J. Food Sci. Technol. 34(4), 577-582
  10. Darmadji, P. and Izumimoto, M. (1994) Effect of chitosan in meat preservation. Meat Sci. 38(2), 243-254 https://doi.org/10.1016/0309-1740(94)90114-7
  11. Ensor, S. A., Calkins, C. R., and Quint, L. N. (1987) Comparative evaluation of whey protein concentrate, soy protein isolate and calcium-reduced non-fat dry milk as binders in an emulsion-type sausage. J. Food Sci. 52, 1155-1158 https://doi.org/10.1111/j.1365-2621.1987.tb14032.x
  12. Hernandez-Jover, T., Izquierdo-Pulido, M., Veciana-Negues, M. T., and Vidal-Carou, M. C. (1996) Biogenic amine sources in cooked cured shoulder pork. J. Agric. Food Chem. 44, 3097-3101 https://doi.org/10.1021/jf960250s
  13. Jauregui, C. A., Regenstein, J. N., and Baker, R. C. (1981) A simple centrifugal method for measuring expressible moisture, a water-binding property of muscle foods. J. Food Sci. 46, 271-273
  14. Jin, S. G., Kim, J. S., Park, T. S., Lee, J. I., Shin, T. S., and Park, G.B. (1995) Effect of sodium lactate addition and lactic acid dipping on the shelf-life of vienna sausage. Korean J. Anim. Sci. 37, 418-42
  15. Jo, C., Lee, J. W., Lee, K. H., and Byun, M. W. (2001)Quality properties of pork sausages prepared with water soluble chitosan oligomer. Meat Sci. 59, 369-375 https://doi.org/10.1016/S0309-1740(01)00089-4
  16. Kim, O. H. and Choi, Y. H. (1999) The study on developing pork sausage by treatment of chitosan. Proceeding of Annuat Conference, The Korean Society for Chitin and Chitosan., Seoul, Korea, pp. 95-121
  17. Kim, S. K., Jeon, Y. J., and Zan, H. C. (2000) Antibacterialeffect of chitooligo saccharides with different molecularweights prepared using membrane bioreactor. J. Chitin Chitosan, 5, 1-8
  18. Knorr, D. (1984) Use of chitonous polymers in food. Food Technol. 38, 85-97
  19. Lamkey, J. W., Leak, F. W., Tuley, W .B., Johnson, D. D., and West, R. L. (1991) Assessment of sodium lactate addition to fresh pork sausage. J. Food Sci. 56, 220-223 https://doi.org/10.1111/j.1365-2621.1991.tb08015.x
  20. Lin, K.. W. and Lin, S. N. (2002) Effect of sodium lactate and trisodium phosphate on the physico-chemical properties and shelf-life of low-fat Chinese-style sausage. Meat Sci. 60, 147-154 https://doi.org/10.1016/S0309-1740(01)00116-4
  21. Maas, M. R., Glass, K. A., and Doyle, M. P. (1989) Sodium lactate delays toxin production by Clostridium botulinum in cook-in-bag turkey products. Appl. Environ. Microbiol. 55, 2226-2229
  22. Murano, E. A. and Rust, R. E. (1995) General microbial profile of low-fat frankfurters formulated with sodium lactate and a texture modifier. Muscle Foods 18, 313-323
  23. Moon, J. D., Park, G. B., Lee, H. G., Kim, Y. G., Jin, S. K., Lee, I. K., Shin, T. S., and Song, D. J. (1996a). Effects of seed oils, water and carrageenan on the sensory properties of low-fat sausages during cold storage. Korean J. Food Sci. Ani. Resour. 16, 121-126
  24. Korean Food & Drug Administration (KFDA) (2002) Food code. pp. 220
  25. Sagoo, S., Board, R., and Roller, S. (2002) Chitosan inhibits growth of spoilage micro-organism in chilled pork products. Food Microbiol. 19, 175-182 https://doi.org/10.1006/fmic.2001.0474
  26. SAS Institute Inc. (1989) SAS User's Guide, Statistical Analysis System, Cary. NC
  27. Shelef, L. and Yang, Q. (1999) Growth supression of Listeria monocytosenes by lactate in broth, chicken, and beef. J. Food Prot. 54, 283-287
  28. Sofos, J. (1995) Proceeding of ECCEMAMST Course. June, Athens, Greece. pp. 25-28
  29. Sugano, T., Fujikawa, T., Hiratsuji, Y., Nakashima, K.., and Funkuda, N. (1980) A novel use of chitosan as a hypocholesterlemic agent in rats. Am. J. Clin. Nutr. 33, 787
  30. Youn, S. K., Park, S. M., Kim, Y. J., and Ahn, D.H. (1999). Effect on storage property and quality in meat sausages by added chitosan. J. Chitin and Chitosan, 4(4), 189-195
  31. Youn, S. K., Park, S. M., and Ahn, D. H. (2000) Studies on the improvement of storage property in meat sausage using chitosan-II. Difference of storage property by molecular weight of chitosan. J. Korean Soc. Food Sci. Nutr. 29(5), 849-853