Antioxidative Ability of Lactic Acid Bacteria

유산균의 항산화 효과

  • 김현수 (농촌진흥청 축산기술연구소) ;
  • 함준상 (농촌진흥청 축산기술연구소)
  • Published : 2003.06.01

Abstract

The health benefits of friendly bacteria first came to the attention of the general public in 1908, when Dr. Elie Metchnikoff, a Russian biologist, wrote The Prolongation of Life. The longevity may be, in part, due to the antioxidative ability of lactic acid bacteria. However, the antioxidative effect of lactic acid bacteria has been reported only recently. Many kinds of reactive oxygen species can be formed in the human body and in food system, oxidative stress plays a significant pathological role in human disease. Antioxidants are effective for the reduction of oxidation induced by oxygen radicals by scavenging reactive oxygen species. Various synthetic and natural antioxidants have been reported, but there are doubts about the safety and long term effects on health. Antioxidants from natural sources are likely to be found more desirable. An elevated scavenging ability of reactive oxygen species would be a good property for commercially applied lactic acid bacteria. Antioxidant supplement or food containing antioxidants would be greatly applied for the reduction of oxidative damage for human body, and lactic acid bacteria are potentiated candidates for the production of functional foods or natural antioxidant supplements.

최근 항산화제 연구는 식품, 의약품, 농업분야 등 다방면에서 이용될 수 있기 때문에 많은 산업적 효과를 기대할 수 있다. 특히 지금까지 알려진 항산화제가 약한 활성, 독성 및 사용상의 한계로 인하여 사용하는데 있어서 많은 문제점을 내포하고 있다. 따라서 천연으로부터 보다 안전하고 강한 활성을 지닌 천연항산화제의 개발이 요구된다. 활성산소 제거능력이 향상된 유산균은 식품산업에 중요하며 인간 장내 외인성, 내인성 산화적 스트레스 제거에 중요하다고 생각된다. 따라서 유산균을 이용한 항산화제의 고부가가치 창출을 위해서는 생물학적 기능연구 및 질병모델계에서의 효능평가가 이루어져야 하며 항산화제의 효능검정 및 항산화제 작용 메커니즘 등 다양한 방면의 연구가 병행되어야 할 것으로 생각된다

Keywords

References

  1. Ahotupa, M., Saxelin, M., and Korpela, R. (1996) Antioxidative properties of Lactobacillus GG. Nutr. Today(Supp1.) 31, 51S-52S
  2. Akaike, T., Sato, K., Ijiri, S., Miyamoto, Y., Kondo, M., Ando, M., and Maeda, H. (1992) Bactericidal activity of alkyl peroxyl radicals generated by hemeiron-catalyzed decomposition of organic peroxides. Arch. Biochem. Biophys. 294, 55-63 https://doi.org/10.1016/0003-9861(92)90136-K
  3. Amanatidou, A. E., Smid, J., Bennik, M. H. J., and Gorris, L. G. M. (2001) Antioxidative properties of Lactobacillus sake upon exposure to elevated oxygen concentrations. FEMS Microl Lett. 203, 87-94 https://doi.org/10.1111/j.1574-6968.2001.tb10825.x
  4. Archibald, F. S. and Fridovich, I. (1981) Manganese, superoxide dismutase and oxygen tolerance in some lactic acid bacteria. J. Bacteriol. 146, 928-936
  5. Aubourg, S. P. (1993) Review:interaction of malondialdehyde with biological molecules-new trend about reactivity and significance, Int. J. Food Thecnol. 28, 323-335
  6. Bai, J., Rodriguez, A. M., Melendez, J. A., and Cederbaum, A. I. (1999) Over expression of catalase in cytosolic or mitochondrial compartment protects HepG2 cells against oxidative injury. J. Bio. Chem. 274, 26217-26224 https://doi.org/10.1074/jbc.274.37.26217
  7. Baker, M. A. and He, S. Q. (1991) Elaboration cellular DNA break by hydroperoxides. Free Rradic. Bio. Med. 11, 563-572 https://doi.org/10.1016/0891-5849(91)90137-R
  8. Bertelsen, G., Christophersen, C., Nielsen, P. H., Madsen, H. L., and Stadel, P. (1995) Chromatographic isolatopn of antioxidants guided by a methyl linoleate assay. J. Agric. Food Chem. 43, 1272-1275 https://doi.org/10.1021/jf00053a027
  9. Boveris, A. and Chance, B. (1973) The mitochondrial generation of hydrogen peroxide:genera1 properties and effect of hyperbaric oxygen. Biochem. J. 134, 707-716 https://doi.org/10.1042/bj1340707
  10. Buettner, G. R. (1993) The packing order of free radicals and antioxidants:lipid peroxidation, alpha-tocopherol and ascorbate. Arch. Biochem. Biophys. 300, 535-534 https://doi.org/10.1006/abbi.1993.1074
  11. Commoner, B., Townsend, J., and Pake, G. E. (1954) Free radicals in biological materials. Nature 174, 689-691 https://doi.org/10.1038/174689a0
  12. Condon, S. (1987) Response of lactic acid bacteria to oxygen. FEMS Microbiol. Rev. 46, 269-280 https://doi.org/10.1111/j.1574-6968.1987.tb02465.x
  13. Curtin, J. F., Donovan, M., and Cotter, T. G. (2002) Regulation and measurement of oxidative stress in apoptosis. J. of Immunol. Methods 265, 49-72 https://doi.org/10.1016/S0022-1759(02)00070-4
  14. Dahiya, R. S. and Speck, M. L, (1968) Hydrogen peroxide formation by lactobacilli and its effect on Staphylococcus aureus. J. Dairy Sci. 51, 1568-1572 https://doi.org/10.3168/jds.S0022-0302(68)87232-7
  15. Fahey, R. C., Brown, W. C., Adams, W. B., and Worsham, M. B. (1978) Occurrence of glutathione in bacteria. J. Bacteriol. 133, 1126-1129
  16. Farr, S. B. and Kogoma, T. (1991) Oxidative stress response in Escherichia coli and Salmonella typhimurium. Microbiol. Rev. 55, 561-585
  17. Floyd, R. A. (1990) The role of 8-hydroxyguanine in carcinogenesis. Carcinogenesis 11, 1447-1450 https://doi.org/10.1093/carcin/11.9.1447
  18. Fridovich, I. (1989) Superoxide dismutase. J. Biol. Chem. 264, 7761-7764
  19. Gardner, H. W. (1975) Decomposition of linoleic acidhydroperoxides. J. Agric. Food Chem. 23, 129-136 https://doi.org/10.1021/jf60198a012
  20. Gardner, P. and Fridovich, I. (1991) Superoxide sensitivity of the Escherichia coli 6-phosphog1uconate dehydratase. J. Biol. Chem. 266, 1478-1483
  21. Gille, J. J., Van Berkel, C. G., and Joenje, H. (1994) Mutagenicity of metabolic oxygen radicals in mammalian cell cultures. Carcinogenesis 15, 2695- 2699 https://doi.org/10.1093/carcin/15.12.2695
  22. Halliwell, B. (1987) Oxidant and human diease:Some new concepts. FASEB J. 1, 358-364
  23. Halliwell, B. (1999) Oxygen and nitrogen are procarcinogens. Damage to DNA by reactive oxygen, chlorine and nitrogen species:measurement, mechanism and the effects of nutrition. Mutat. Res. 443, 37-52 https://doi.org/10.1016/S1383-5742(99)00009-5
  24. Halliwell, B. and Gutteridge, J. M. C. (1984) Oxygen toxicity, oxygen radicals, transition metals and disease. Biochem. J. 219, 1-14 https://doi.org/10.1042/bj2190001
  25. Halliwell, H. S., Murica, S., Chrico, S., and Aruoma, O. I. (1995) Free radical and antioxidants in foods: what do they and how do they work. CRC Crit. Rev. Food Sci. Nutr. 35, 7-20 https://doi.org/10.1080/10408399509527682
  26. Hampton, M. D. and Orrenius, S. (1997) DuaI regulation of caspase activity by hydrogen peroxide: implications for apoptosis. FEBS Lett. 414, 552-556 https://doi.org/10.1016/S0014-5793(97)01068-5
  27. Heimberger, A. and Eisenstark, A. (1988) Compartmentalization of catalase in Ecsherichia coli. Biochem Biophys. Res. Commun. 154, 392-397 https://doi.org/10.1016/0006-291X(88)90698-5
  28. Husain, S. R.., Gllard, J., and Gllard, P. (1987) a -Tocopherol prooxidant effect and malondialdehyde production. J. Am. Oil Chem. Soc. 64, 109-111 https://doi.org/10.1007/BF02546263
  29. Imlay, J. A. and Frividoch, I. (1991) DNA damage by hydrogen peroxide through the Fenton reaction in vivo and in vitro. Science 240, 640-642 https://doi.org/10.1126/science.2834821
  30. Imlay, J. A. and Linn, S. (1988) DNA damage and oxygen radical toxicity. Science 240, 1302-1309 https://doi.org/10.1126/science.3287616
  31. Ingold, K. U., Webb, A. C., Witter, D., Burton, G. W., Metcalfe, T. A., and Muller, D. P. R. (1987) Vitamin E remain the major lipid-soluble, chain breaking antioxidant in human plasma even in individuals suffering vitamin E deficiency. Arch. Biochem. Biophys. 259, 224-225 https://doi.org/10.1016/0003-9861(87)90489-9
  32. K.aizu, H., Sasaki, M., Nakajima, H., and Suzuli, Y. (1993) Effect of antioxidative lactic acid bacteria on rats fed a diet deficient in vitamin E. J. Dairy Sci. 76, 2493-2499 https://doi.org/10.3168/jds.S0022-0302(93)77584-0
  33. Knauf, H. J., Vogel, R. F., and Hammes, W. P. (1992) Cloning, sequence, and phenotype expression of katA, which encodes the catalase of Lactobacillus sake LTH677. Appl. Environ. Microbiol. 58, 832-839
  34. Korpela, R., Peuhkuri, K., L$\"a$hteenm$\"a$ki, T., Sievi, E., Saxelin, M., and Vapaatalo, H. (1997) Lactobacillus rhamnosus GG shows antioxidative properties in vascular endothelial cell culture. Milchwissenschaft 52, 503-505
  35. Kullisaar, T., Zilmer, M., Mikelsaar, M., Vihalemm, T., Annuk, H., Kairane, C., and Kilk, A. (2002) Two antioxidative lactobacilli strains as promising probiotics. Intl. J. FoocI Microbiol. 72, 215-224 https://doi.org/10.1016/S0168-1605(01)00674-2
  36. Lin, M. Y. and Chang, F. J. (2000) Antioxiative effect of intestinal bacteria Bifidobacterium logum ATCC 15708 and Lactobacillus acidophilus ATCC 4356. Diges. Diseases and Sci. 45, 1617-1622 https://doi.org/10.1023/A:1005577330695
  37. Lin, M. Y. and Yen, C. L. (1999) Inhibition of lipid peroxidation by Lactobacillus acidophilus and Bifidobacterium logum. J. Agric. Food Chem. 47, 3661-3664 https://doi.org/10.1021/jf981235l
  38. Lingnert, H., Akesson, G., and Eriksson, C. E. (1989) Antioxidant effect of superoxide dismutase from Saccharomyces cerevisiae in model system. J. Agric. Food Chem. 37, 23-28 https://doi.org/10.1021/jf00085a006
  39. Loewen P. C. (1979) Levels of glutathione in Escherichia coli. Can J. Biochem. 57, 107-111 https://doi.org/10.1002/cjce.5450570117
  40. Mager, W. H. and De Kruijff, A. J. J. (1995) Stress-induced transcriptional activation. Microbiol. Rev. 59, 506-531
  41. McCord, J. M. and Fridovich, I. (1969) Superoxide dismutase. An enzymatic function for erythrocuprein(cheinocuprein). J. Bio. Chem. 244, 6049-6055
  42. Michiels, C., Raes, M., Toussaint, O., and Remacle, J. (1994) Importance of SE-glutathione peroxidase, catalase, and CU/ZN SOD for cell survival against oxidative stress. Free Radic. Bio. Med. 17, 235-248 https://doi.org/10.1016/0891-5849(94)90079-5
  43. Mruk, D. D., Silvestrini, B., Mo, M. Y., and Cheng C. Y. (2002) Antioxidant superoxide dismutase a review:its function, regulation in the testis and role in male fertility, Contraception 65, 305-311 https://doi.org/10.1016/S0010-7824(01)00320-1
  44. Nakayama, K. (1992) Neucleotide sequence of Streptococcus mutans superoxide dismutase gene and isolatopn of insertion mutants. J. Bacteriol. 174, 4928-4934 https://doi.org/10.1128/jb.174.15.4928-4934.1992
  45. Reed, D. J. (1990) Glutathione:Toxicological implications. Annu. Rev. Pharmacol. Toxicol. 30, 603-631 https://doi.org/10.1146/annurev.pa.30.040190.003131
  46. Sanders, J. W., Leehouts, K. J., Haandrikmam. A. J.. Venema, G., and Kok, J. (1995) Stress response in Lactococcus lactis:c1oning, expression analysis and mutation of the lactococcal superoxide dismutase gene. J. Bacteriol. 177, 5254-5260 https://doi.org/10.1128/jb.177.18.5254-5260.1995
  47. Simic, M. G. (1988) Mechanisim of inhibition of freeradical processed in mutagenesis and carcinogenesis. Mutat. Res. 202, 377-386 https://doi.org/10.1016/0027-5107(88)90199-6
  48. Shertzer, H. G., Bannenberg, G., and Mold, P. (1992) Evaluation of iron binding and peroxide-mediated toxicity in rat hepatocytes. Biochem. Pharmacol. 44 1367-1373 https://doi.org/10.1016/0006-2952(92)90538-T
  49. Shimamura, S., Abe, F., Ishibashi, N., Miyakawa, H., Yaeshima, T., Araya, T., and Tomita, M., (1992) Relationship between oxygen sensitivity and oxygenmetabolisim of Bifidobacterium species. J. Dairy Sci. 75, 3296-3306 https://doi.org/10.3168/jds.S0022-0302(92)78105-3
  50. Smart, J. B. and Thomas, T. D., (1987) Effect of oxygen on lactose metabolism in lactic streptococci. Appl. Environ. Micorbiol. 53, 533-541
  51. Stadtman, E. R. and Berlett, B. S. (1991) Fenton chemistry, Amino acid oxidation. J. Bio. Chem. 266, 17201-17211
  52. Stecchini, M. L., Torre, M. D., and Munari, M. (2001) Determination of peroxy radical scavenging of lactic acid bacteria, Int. J. Food Microbiol 64, 183-188 https://doi.org/10.1016/S0168-1605(00)00456-6
  53. Tome, M. E., Baker, A. F., Powis, G., Payne, C. M., and Briehl, M. M. (2001) Catalase-overexpressing thymocytes are resistant to glucocorticoid-induced apoptosis and exhibit increased net tumor growth. Cancer Res. 61, 2766-2773
  54. Wanasundara, U., Amarowicz, R., and Shahidi, F. (1994) Isolation and identification of an antioxidative component in canola meal. J. Agric. Food. Chem. 42, 1285-1290 https://doi.org/10.1021/jf00042a006
  55. Zemser, R. B. and Martin, S. E. (1998) Heat stability of virulence associates enzymes from Listeria monocytogenes SLCC 5764. J. Food. Prot. 61, 899-902 https://doi.org/10.4315/0362-028X-61.7.899
  56. Zitzelsberger, W., G$\"o$tz, F., and Schleifer, K. H. (1984) Distribution of superoxide dismutases oxides and NADH peroxides and various streptococci. FEMS Micorbiol. Lett. 21, 243-246 https://doi.org/10.1111/j.1574-6968.1984.tb00218.x