Biological Pump in the East Sea Estimated by a Box Model

상자 모형으로 추정한 동해의 생물 펌프

  • Kim, Jae-Yeon (Department of Marine Science, Pusan National University) ;
  • Kang, Dong-Jin (OCEAN Laboratory, Research Institute of Oceanography, School of Earth and Environmental Sciences, Seoul National University) ;
  • Kim, Eung (Department of Oceanography & Ocean Environmental Sciences, Chungnam National University) ;
  • Cho, Jin-Hyung (Department of Oceanography & Ocean Environmental Sciences, Chungnam National University) ;
  • Lee, Chang-Rae (Department of Oceanography & Ocean Environmental Sciences, Chungnam National University) ;
  • Kim, Kyung-Ryul (OCEAN Laboratory, Research Institute of Oceanography, School of Earth and Environmental Sciences, Seoul National University) ;
  • Lee, Tong-Sup (Department of Marine Science, Pusan National University)
  • 김재연 (부산대학교 해양과학과) ;
  • 강동진 (서울대학교 지구환경과학부/해양연구소 해양순환계 연구실) ;
  • 김응 (충남대학교 해양학과) ;
  • 조진형 (충남대학교 해양학과) ;
  • 이창래 (충남대학교 해양학과) ;
  • 김경렬 (서울대학교 지구환경과학부/해양연구소 해양순환계 연구실) ;
  • 이동섭 (부산대학교 해양과학과)
  • Published : 2003.08.01

Abstract

Recently efforts are underway to analyze the impacts of anthropogenic $CO_2$ on the global environments and the amount of oceanic uptake increase. The East Sea is now viewed as a miniature ocean because its circulation pattern is similar to the ocean conveyer belt. The biological pump of the East Sea is a vital component to understand the carbon cycle quantitatively. In this paper, the biological pump is estimated utilizing the stoichiometric ratio between carbon and phosphorus. A simple phosphate budget model is constructed based on the seawater and dissolved oxygen box model that can simulate the recent structural change in deep water circulation of the East Sea. A model run from you 1952 to 2040 shows the steadily intensifying biological pump. Currently it exports about 0.016 Pg C yr$^{-1}$ , which corresponds to 35% of the carbon introduced into the seawater by the air-sea exchange. An increased oxygen supply to the central water mass as a result of from the transition in the ventilation system might enhance the remineralization of sinking biogenic particles. This should strengthen the upward nutrient flux into the surface layer. Consequently, the biological sequestration of anthropogenic carbon is expected to increase with time. The estimated biological uptake of the anthropogenic carbon in the East Sea since the Industrial Revolution is estimated as 0.025 Pg C.

산업혁명 이후 인류가 과량으로 방출한 이산화탄소가 지구환경에 어떤 영향을 미치는지, 그리고 해양이 흡수하는 탄소량의 크기가 얼마인지에 대한 연구들이 진행되고 있다. 대양과 비슷한 순환 특징을 가지고 있는 동해가 이산화탄소 증가와 지구온난화에 대해 어떻게 반응하는지를 알아보기 위한 연구계획의 일환으로 탄소순환에 중요하게 기여하는 생물펌프의 크기를 간단한 상자모형을 적용시켜 추정하였다. 매개변수로는 인산염을 사용하였는데, 동해에서 일어나고 있는 수층 구조의 변화를 고려해서 해수 수지와 용존산소 수지를 맞춘 다음에, 인산염의 과거 자료를 바탕으로 인의 순환 플럭스를 모사하였다. 1952년부터 2040년까지 모사해 본 결과, 동해에서 생물펌프는 점차 강화되고 있고, 현재 0.0156 Pg C yr$^{-1}$ 정도를 해양 내부로 내보내고 있는 것으로 추정된다. 한편 동해의 해수순환은 저층수를 만드는 것이 줄어드는 반면 중앙층으로 유입이 증가하는 추세이다. 산소가 풍부한 표층수가 중앙층으로 유입되면서 유광층에서 하강한 생물입자들의 분해가 이 층에서 활발해져서 영양염을 표층으로 되돌리는 것이 강화될 것으로 보인다. 이렇게 되면 생물에 의한 탄소제거가 늘어나게 될 깃이다. 지난 50년간의 생물펌프 변화로 블 때 산업혁명 이후 생물에 의한 동해의 인류기원 이산화탄소 흡수량은 0.025 Pg C 정도로 추정된다.

Keywords

References

  1. 서울대학교 박사학위논문 동해의 탄소 순환에 관한 연구 강동진
  2. 서울대학교 석사학위논문 관악산 대기 및 동해 해수중의 $SF_6$에 관한 연구 이정현
  3. Earth-Science Reviews v.51 The biogeochemical cycling of phosphorus in marine systems Benitez-Nelson,C.R. https://doi.org/10.1016/S0012-8252(00)00018-0
  4. Glob. Biogeochem. Cycles v.5 Radiocarbon decay and oxygen utilization in the deep Atlantic Ocean Broecker,W.S.;S.Blanton;W.M.Smethie;G.Ostlund https://doi.org/10.1029/90GB02279
  5. J. Geophys. Res. v.91 The distribution of bomb tritium in the ocean Broecker,W.S.;T.S.Peng;G.Ostlund https://doi.org/10.1029/JC091iC12p14331
  6. Nature v.353 Do upper-ocean sediment traps provide an accurate record of particle flux? Buesseler,K.O. https://doi.org/10.1038/353420a0
  7. Proceedings of the Autumn Meeting of the Korean Society of Oceanography abstract Nutrient fluxes through the Korea Strait Chang,K.I.;Henry Perkins;Chung,C.S.;Yang,S.R.;Lynne Talley
  8. Mar. Chem. v.67 An anoxic Sea of Japan by the Year 2200? Chen,C.T.A.;A.S.Bychkov;S.L.Wang;G.Yu.Pavlova https://doi.org/10.1016/S0304-4203(99)00074-2
  9. Geophysical Rescarch Letter v.23 Redfield ratios and regeneration rates of particulate matter in the Sea of Japan as a model of closed system Chen,C.T.A.;Gong,G.C.;Wang,S.L.;Bychkov,A.S. https://doi.org/10.1029/96GL01676
  10. J. Geophys. Res. v.74 Abyssal carbon and radiocarbon in the Pacific Craig,H. https://doi.org/10.1029/JC074i023p05491
  11. Nature v.420 Respiration in the open ocean del Giorgio,P.A.;C.M.Duarte https://doi.org/10.1038/nature01165
  12. Limnol. Oceanogr. v.12 Uptake of new and regenerated forms of nitrogen in primary productivity Dugdale,R.C.;J.J.Goering https://doi.org/10.4319/lo.1967.12.2.0196
  13. Nature v.282 Particulate organic matter flux and planktonic new production in deep ocean Eppley,R.W.;B.J.Peterson https://doi.org/10.1038/282677a0
  14. J. Geophys. Res. v.101 Natural and anthropogenic changes in atmospheric CO₂over the last 1000 years from air in antarctic ice and firn Etheridge,D.M.;L.P.Steele;R.L.Langenfelds;R.J.Francey;J.M.Barnola;V.I.Margan https://doi.org/10.1029/95JD03410
  15. J. Oceanogr. Soc. Japan v.39 Abyssal circulation in the Japan Sea Gamo,T.;Horibe,Y. https://doi.org/10.1007/BF02070392
  16. Geophys. Res. Lett. v.26 Global warming may have slowed down the deep conveyor belt of a marginal sea of the northwestem Pacific:Japan Sea Gamo,T. https://doi.org/10.1029/1999GL002341
  17. Geophys. Res. Lett. v.28 Recent upward shift of the deep convection system in the Japan Sea, as inferred from the geochemical tracers tritium, oxygen, and nutrients Gamo,T.;N.Momoshima;S.Tolmacheyov https://doi.org/10.1029/2001GL013367
  18. THE SEA: Biological-Physical Interactions in the Oceans v.12 Biogeochemical/Physical Interactions in Elemental Cycles Gruber,N.;J.L.Sarmiento;A.R.Robinson(ed.);J.J.McCarthy(ed.);B.J.Rothschild(ed.)
  19. J. Korean. Soc. Oceanogr. v.36 An estimation of the new production in the southern East Sea using helium isotopes Hahm,D.;K.R.Kim
  20. Terr. Atmos. Ocean. Sci. v.13 Aragonitic pteropod flux to the interior of the East Sea (Sea of Japan) Hong,G.H.;C.T.A.Chen https://doi.org/10.3319/TAO.2002.13.2.205(O)
  21. Climate change 2001:The scientific Basis Houghton,J.T.;Y.Ding;D.J.Griggs;M.Noguer;P.J.van der Linden;X.Dai;K.Maskell;C.A.Johnson
  22. Global Biogeochemical Cycles The phosphorus cycle Jahnke,R.A.;Butcher,S.S.(ed.);R.J.Charlson(ed.);G.H.Orians(ed.);G.V.Wolfe(ed.)
  23. Philosophical Transactions of the Royal Society. v.A325 The use of anthropogenic tritium and helium-3 to study subtropical gyre ventilation and circulation Jenkins,W.J.
  24. Geosciences Journal v.2 Recent developments in chemical oceanography of the East(Japan) Sea with an emphasis on CREAMS findings: A review Kang,D.J.;Lee,K.E.;Kim,K.R
  25. Geophys. Res. Lett. v.30 A Moving-Boundary Box Model (MBBM) for Oceans in Change: An Application to the East/Japan Sea Kang,D.J.;S.Park;Y.G.Kim;K.Kim;K.R.Kim https://doi.org/10.1029/2002GL016486
  26. J. Korean Soc. Oceanogr. v.31 New findings from CREAMS observations: water masses and eddies in the East Sea Kim,K.;K.R.Kim;J.Y.Chung;B.H.Choi;S.K.;Byun;G.H.Hong;M.Takematsu;J.H.Yoon;Y.Volkov;M.Danchenkov
  27. J. Korean Soc. Oceanogr. v.31 What is happening in the East Sea (Japan Sea)?: Recent chemical observation during CREAMS 93-96 Kim,K.R.;K.Kim
  28. MTS Journal v.33 The East Sea (Japan Sea) in Change:A story of Dissolved Oxygen Kim,K.R.;K.Kim;D.J.Kang;S.Y.Park;M.K.Park;Y.G.Kim;H.S.Min;D.Min
  29. Oceanography in Japan v.11 The changes in the East/Japan Sea found by CREAMS Kim,K.R.;Kim,K.;Kang,D.J.;Volkov,Y.N.;Yoon,J.H.;Takematsu,M. https://doi.org/10.5928/kaiyou.11.419
  30. Geophys. Res. Lett. v.28 Warming and Structural Changes in the East Sea (Japan Sea): A Clue to the future Changes in Global Oceans? Kim,K.;Kim,K.R.;Min,D.;Volkov,Y.;Yoon,J.H.;Takematsu,M. https://doi.org/10.1029/2001GL013078
  31. Ph. D thesis, Seoul National Univ. A study on the water characteristics and the circulation of the intermediate and deep layer of the East Sea. Kim,Y.G.
  32. Science v.284 Geochemical consequences of increased atmospheric carbon dioxide on coral reefs Kleypas,J.A.;R.W.Buddemeier;D.Archer;J.P.Gattuso;C.Langdon;B.N.Opdyke https://doi.org/10.1126/science.284.5411.118
  33. Geophys. Res. Lett. v.25 no.5 Direct observation of the rapid turnover of the Japan Sea bottom water by means of AMS radiocarbon measurement Kumamoto,Y.;Yoneda,M.;Shivata,Y.;Kume,H.;Tanaka,A.;Uehiro,T.;Morita,M.;Shitashima,K. https://doi.org/10.1029/98GL00359
  34. Glob. Biogeochem. Cycle v.14 Temperature effects on export production in the open ocean Laws,E.A.;P.G.Falkowski;W.O.Smith;J.R.H.Ducklow;J.McCarthy https://doi.org/10.1029/1999GB001229
  35. Limnol. Oceanogr. v.46 Global net community production estimated from the annual cycle of surface water total dissolved inorganic carbon Lee,K. https://doi.org/10.4319/lo.2001.46.6.1287
  36. Ph.D thesis, Seoul National Univ. An ecological study of phytoplankton in the southwestern waters of the East Sea (Sea of Japan) Lee,W.H.
  37. EOS v.81 no.52 Exploring continental margin carbon fluxes on a global scale Liu,K.K.;L.Atkinson;C.T.A.Chen;S.Gao;J.Hall;R.W.Macdonald;L.Talaue McManus;R.Quinones
  38. The changing ocean carbon cycle, Continental margins carbon fluxes Liu,K.K.;K.Iseki;S.Y.Chao;Roger,B.Hanson(ed.);Hugh,W.Ducklow(ed.);John,G.filed(ed.)
  39. Limol. Oceanogr. v.13 Role of the marine biosphere in the global carbon cycle Longhurst,A.R.
  40. Glob. Biogeochem. Cycle v.14 A global monthly climatology of phosphate, nitrate, and silicate in the upper ocean: Spring-summer export prodction and shallow remineralization Louanchi,F.;R.G.Najjar https://doi.org/10.1029/1999GB001215
  41. Nature v.364 Century-scale effects of increased atmospheric CO₂on the ocean-atmosphere system Manabe,S.;R.J.Stouffer https://doi.org/10.1038/364215a0
  42. EOS. Trans. Am. Geohys. Union v.77 Chlorofluorocarbons in the East Sea (Sea of Japan) Min,D.H.;R.F.Weiss;K.R,Kim
  43. Ph. D. Thesis, Univ. of California, San Diego, USA. Studies of large-scale intermediate and deep water circulation and ventilation in the North Atlantic, South Indian and Northeast Pacific Oeans, and in the East Sea (Sea of Japan), using chlorofluorocarbons as tracers Min,D.H.
  44. J. Korean Fish. Soc. v.31 Regeneration processes of nutrients in the polar front area of the East Sea. IV. Chlorophyll a distribution. new production and the vertical diffusion of nitrate Moon,C.H.;S.R.Yang;H.S.Yang;H.J.Cho;S.Y.Lee;S.Y.Kim
  45. Bull. Amer. Meteor. Soc. v.82 China's development could lead to bottom water formation in the Japan/East Sea Nof,D. https://doi.org/10.1175/1520-0477(2001)082<0609:CDCLTB>2.3.CO;2
  46. The Sea 2 The influence of organisms on the composition of sea water Redfield,A.C.;Ketchum,B.H.;Richards,F.A.;M.N.Hill(ed.)
  47. Nature v.361 Carbon dioxide limitation of marine phytoplankton growth rates Riebesell,U.;D.A.Wolf-Gladrow;V.Smetacek https://doi.org/10.1038/361249a0
  48. Glob. Biogeochem. Cycles v.9 Limiting future atmospheric carbon dioxide Sarmiento,J.L.;C.Le Quere;S.W.Pacala https://doi.org/10.1029/94GB01779
  49. Glob. Biogeochem. Cycles v.14 Air-sea CO₂fluxes and carbon transport a comparison of three ocean general circulation models Sarimento,J.L.;P.Mofray;E.Maier-Reimer;O.Aumont;R.Murnane;J.Orr https://doi.org/10.1029/1999GB900062
  50. Physics Today v.55 no.8 Sinks for anthropogenic carbon Sarmiento,J.L.;N.Gruber https://doi.org/10.1063/1.1510279
  51. J. Oceanogr. Soc. Korea v.18 no.2 Plankton study in the southwestern Sea of Korea(Ⅰ)-Phytoplandton distribution in september, 1981- Shim,J.H.;W.H.Lee
  52. J. Oceanogr. Soc. Korea v.22 no.2 Distribution of phytoplankton species and associated environmental factors in the southwestern waters of the East Sea (Sea of Japan), Korea; A canonical correction analysis Shim,J.H.;W.H.Lee
  53. Progress in Oceanogr. v.17 A note on the Japan Sea Proper Water Sudo.H. https://doi.org/10.1016/0079-6611(86)90052-2
  54. 2nd International Symposium, CO₂in the Oceans, extended abstracts Net sea-air CO₂flux over the global oceans: An improved estimate based on the sea-air pCO₂difference Takahashi,T.;R.H.Wanninkhof;R.A.Feely;R.F.Weiss;D.W.Chipman;N.Bates;J.Olafsson;C.sabine;S.C.Sutherland
  55. Deep Sea Res. Part Ⅱ v.49 Global sea-air CO₂ flux based on climatological surface ocean pCO₂, and seasonal biological and temperature effects Takahashi,T.;Stewart,C.Sutherland;Colm Sweeney;Alain Poisson;Nicolas Metzl;Bronte Tibrook;Nicolas Bates;Rik Wanninkhof;Richard A.Feely;Christopher Sabine;Jon Olafsson;Yukihiro Nojiri https://doi.org/10.1016/S0967-0645(02)00003-6
  56. Deep Ocean Circulation, Physical and Chemical Aspects Dynamics of the Japan Sea deep water studied with chemical and radiochemical tracers Tsunogai,S.;Watanabe,Y.W.;Harada,K.;Watanabe,S.;Saito,S.;Nakajima,M.;T.Teramoto(ed.)
  57. Tellus v.51B Is there a continental shelf pump for the absorption of atmospheric CO₂? Tsunogai,S.;S.Watanabe;T.Sato
  58. Nature v.400 The relative influences of nitrogen and phosphorus on oceanic primary production Tyrell,T. https://doi.org/10.1038/22941
  59. Jounal of the Imperial Fishery Experimental Stations v.5 The Results of simultaneous oceanographic investigations in the Japan Sea and its adjacent waters in May and June 1932 Uda,M.
  60. Reports of multi-disciplinary oceanography expeditions on R/V Vityaz v.6 USSR Academy of Science
  61. Reports of multi-disciplinary oceanography expeditions on R/V Vityaz v.6 USSR Academy of Science
  62. The carbon cycle and atmospheric CO₂: natural variation Archean to present Ocean carbon pumps:analysis of relative strength and efficiencies in ocean-driven atmospheric CO₂ changes Volk,T.;M.I.Hoffer;Sundquist,E.T.(ed.);W.S.Broecker(ed.)
  63. Mar. Chem. v.34 Tritium in the Japan Sea and the renwal time of the Japan Sea deep water Watanabe,Y.W.;S.Watanabe;S.Tsunogai https://doi.org/10.1016/0304-4203(91)90016-P