Characteristics of Total Organic Carbon and Chemical Oxygen Demand in the Coastal Waters of Korea

한국 연안수에서 총유기탄소 및 화학적 산소요구량 분포 특성

  • Published : 2003.08.01

Abstract

In order to improve our knowledge of the characteristics of organic compounds in coastal waters, water samples were collected from the Incheon coastal region, the Hyungsan River in Youngil Bay and the Busan coastal region. Also, mooring was carried out near the Kanghwa Island and Seo Island. In this study, the relationship between the total organic carbon (TOC) and salinity, chemical oxygen demand (COD) and salinity were evaluated and determined. Riverine end-member of TOC into the Korean coastal area and its COD estimated from these relationships were 5.32 mg C/l and 8.87 mg O$_2$/l, respectively. The oxidation efficiency of COD to TOC estimated using the high-temperature catalytic oxidation method was about 47%. The linear relationship between TOC and COD was derived as COD (mg O$_2$/l)=0.61${\times}$TOC (mg C/l) -0.03, (R$^2$=0.66). Therefore, it is possible to estimate total organic carbon using this equation from previously reported chemical oxygen demand.

연안수에서 유기 화합물의 정량적인 특성을 파악하기 위하여 인천 연안 지역, 포항의 영일만을 포함한 형산강 지역 그리고 부산 연안 지역에서 시료를 채취하였다. 또한 강화도와 세어도에서 고정관측도 하였다. 연안수의 총유기탄소(TOC)와 염분과의 상관 관계 및 화학적 산소요구량(COD)과 염분과의 상관 관계를 이용하여 추정한 하천에서 연안역으로 유입되는 총유기탄소의 riverine end-member 값은 5.32 mg C/l, 화학적 산소요구량의 riverine end-member 값은 8.87 mg $O_2$/1로 나타났다 고온 촉매 산화(HTCO)방법을 이용하여 측정한 총유기탄소와 화학적 산소요구량을 비교한 결과 화학적 산소요구량은 총유기탄소의 약 47%를 반영하는 것으로 나타났다. 총유기탄소와 화학적 산소요구량에 대한 상관 관계식은 COD(mgO$_2$,/1)=0.61$\times$TOC(mg C/l)-0.03,($R^2$=0.66)으로 이 관계식을 이용하면 기존에 보고된 화학적 산소요구량으로 총유기탄소를 추정하는데 활용할 수 있을 것으로 판단된다.

Keywords

References

  1. 인하대학교 석사학위논문 인천연안 기수해역의 영양염과 미량금속의 생지화학적 동태에 관한 연구 김성준
  2. 인하대학교 석사학위논문 영일-온산만 기수역에서의 용존 유, 무기물 및 다환 방향족 탄화수소의 분포 특성 남선미
  3. 인하대학교 박사학위논문 한국 연안 해역의 해양 기저생산력 결정 요인에 관한 연구 정경호
  4. 해양환경공정시험방법 해양수산부
  5. Ecol. Res. v.16 Mutualistic relationships between phytoplankton and bacteria caused by carbon excretion from phytoplankton Aota,Y.;H.Nakajima https://doi.org/10.1046/j.1440-1703.2001.00396.x
  6. War. Res. v.33 no.2 Relationship between chemical and theoretical oxygen demand for specific classes of organic chemicals Baker,J.R.;M.W.Milke;J.R.Mihelcic https://doi.org/10.1016/S0043-1354(98)00231-0
  7. Mar. Chem. v.67 A high resolution study of surface layer hydrographic and biogeochemical properties between Chesapeake Bay and Bermuda Bates,N.R.;D.A.Hansell https://doi.org/10.1016/S0304-4203(99)00045-6
  8. Mar. Chem. v.41 A critical evaluation of the analytical blank associated with DOC measurements by high-temperature catalytic oxidation Benner,R.;M.Strom https://doi.org/10.1016/0304-4203(93)90113-3
  9. Mar. Chem. v.63 Carbohydrates in phytoplankton and freshly produced dissolved organic matter Biersmith,A.;R.Benner https://doi.org/10.1016/S0304-4203(98)00057-7
  10. Tracers in the sea Lamont Doherty Geological Observatory Broecker,W.S.;T.H.Peng
  11. Geophysical Res. Letters v.19 The role of benthic fluxes of dissolved organic carbon in oceanic and sedimentary carbon cycling Burdige,D.J.;M.J.Alperin;J.Homsteas;C.S.Martins https://doi.org/10.1029/92GL02159
  12. Mar. Chem. v.14 Automatic determination of dissolved organic carbon in seawater in the sub-ppm range Cauwet,G. https://doi.org/10.1016/0304-4203(84)90026-4
  13. Mar. Chem. v.47 HTCO method for dissolved organic carbon analysis in seawater: influence of catalyst on blank estimation Cauwet.G. https://doi.org/10.1016/0304-4203(94)90013-2
  14. Mar. Chem. v.42 A high-temperature catalytic oxidation method for the determination of marine dissolved organic carbon and its comparision with the UV photo-oxidation method Chen,W.;P.J.Wangersky https://doi.org/10.1016/0304-4203(93)90240-O
  15. Kor. J. Botany. v.12 no.B A study on the brackish water type of the Han River estuary Chung,Y.H.;J.H.Shim
  16. Deep Sea Res. I v.41 no.4 Fluorescent matter in the eastern Atlantic Ocean. Part Ⅰ: method of measurement and near-surface distribution Determann,S.;R.Reuter;P.Wagner;R.Willkomm https://doi.org/10.1016/0967-0637(94)90048-5
  17. Deep Sea Res. Ⅰ v.46 Dissolved and particulate organic carbon and nitrogen in the Northweatern Mediterranean Doval,M.D.;F.F.Perez;E.Berdalet https://doi.org/10.1016/S0967-0637(98)00072-7
  18. J. of Geophysical Res. v.97 Cycling of dissolved and particulate organic matter in the open ocean Druffel,E.R.M.;P.M.Williams;J.E.Bauer;J.R.Ertel https://doi.org/10.1029/92JC01511
  19. Organic substances and Sediments in Water, Vol.Ⅰ, Humics and Soils The transport and composition of humic substances in estuaries Fox,L.E.;Baker,R.A.(ed.)
  20. Limnol. Oceanogr. v.40 no.8 Dynamics of dissolved organic carbon (DOC) in oceanic environments Guo,L.;P.H.Santschi;K.W.Warnken https://doi.org/10.4319/lo.1995.40.8.1392
  21. Mar. Chem. v.65 Organic geochemical perspectives on estuarine processes: sorption reactions and consequences Hedges,J.I.;R.G.Keil https://doi.org/10.1016/S0304-4203(99)00010-9
  22. J. of Plankton Res. v.19 Dissolved organic carbon released by zooplankton grazing activity-a high quality substrate pool for bacteria Hygum,B.H.;J.W.Petersen;M.Sondergaard https://doi.org/10.1093/plankt/19.1.97
  23. Limnol. Oceanogr. v.43 The role of dissolved organic matter release in the productivity of the oligortrophic North Pacific Ocean Karl,D.M.;D.V.Hebel;K.Bjorkman;R.M.Letelier https://doi.org/10.4319/lo.1998.43.6.1270
  24. Mar. Chem. v.64 Dissolved protein fluorescence in two Maine estuaries Mayer,L.M.;L.L.Schick;T.C.Loder Ⅲ https://doi.org/10.1016/S0304-4203(98)00072-3
  25. Estuarine, Coastal and shelf Science v.49 Seasonal investigations of dissolved organic carbon dynamics in the Tamar Estuary, U.K. Miller,A.E.J. https://doi.org/10.1006/ecss.1999.0552
  26. Mar. Chem. v.41 Fluorescence as a possible tool for studying the nature and water column distribution of DOC components Mopper,K.;C.A.Schultz https://doi.org/10.1016/0304-4203(93)90124-7
  27. Deep Sea Res. Ⅱ v.47 Dissolved organic carnon in the Gulf of St. Lawrence. Packard,T.;W.Chen;D.Blasco;C.Savenkoff;A.F.Vezina;R.Tian,;L.St-Amand;S.O.Roy;C.Lovejoy;B.Klein;J.C.Therriault;L.Legendre;R.G.Ingram https://doi.org/10.1016/S0967-0645(99)00114-9
  28. J. of Oceanol. Soc. Korea v.30 no.4 Characteristics of fluorescent organic matter and amino acids composition in the East Sea Park,Y.C.;S.K.Son;K.H.Chung;K.H.Kim
  29. J.Water. Poll. Control. Fed. v.46 Brine shrimp bioassay and seawater BOD of petrochemicals Price,K.S.;G.T.Waggy;R.Conway
  30. The sea v.2 The influence of organisms on the composition of seawater. Redfield,A.C.;B.H.Ketchum;F.A.Richards;Hill,M.N.(ed.)
  31. Mar. Chem. v.58 Spectral identification and behaviour of dissolved organic fluorescent material during estuarine mixing processes Sierra,M.M.S.;O.F.X.Donard;M.Lamotte https://doi.org/10.1016/S0304-4203(97)00025-X
  32. Mar. Chem. v.24 A high-temperature catalytic oxidation method for the determination of non-volatile dissolved organic carbon in seawater by direct injection of a liquid sample Sugimura,Y.;Y.Suzuki https://doi.org/10.1016/0304-4203(88)90043-6
  33. Estuarine, Coastal and Shelf Science v.48 Factors controlling accumulatiion of labile dissolved organic carbon in the Gulf of Riga Zweifel,U.L. https://doi.org/10.1006/ecss.1998.0428