Optimal Surfactant Screening by Model Application for Soil Washing Process

오염토양 세척공정에서 모델링을 통한 최적 계면활성제의 선별

  • 우승한 (포항공과대학교 화학공학과/환경공학부) ;
  • 박종문 (포항공과대학교 화학공학과/환경공학부)
  • Published : 2003.09.01

Abstract

A model describing the distribution of contaminants in soil/water systems for the application of soil-washing technology using surfactant was developed. The model simulation was conducted for screening the best surfactant, evaluating the effect of water dose, and optimizing soil-washing methodology. Naphthalene, phenanthrene, and pyrene as target compounds and Triton X-l00, Tergitol NP-10, Igepal CA-720, and Brij 30 as surfactants were used in the model simulations. The washing efficiency was not greatly enhanced by increasing water dose with the same total surfactant dose. The approach of successive washings was more efficient than a single washing with the same amount of water and surfactant. Equal allotment of the amount of water and surfactant was the best condition for the successive washings. The model can be applied for the optimal design of the soil washing process without extra experimental efforts.

계면활성제를 이용한 오염 토양의 세척 공법 적용시 오염물질의 분배를 결정할 수 있는 모델을 개발하였다. 이 모델을 활용하여 세척효과를 극대화할 수 있는 계면활성제의 선정 방법, 물 첨가량 효과, 최적 세척 방법을 예시하였다. 오염물질은 naphthalene, phenanthrene, pyrene, 계면활성제는 Triton X-100, Tergitol NP-10, Igepal CA-720, Brij 30을 대상으로 하였다. 동일한 총량의 계면활성제를 사용할 때 물의 첨가량이 증가하더라도 세척효과의 큰 증가 효과가 없었다. 동일한 총량의 물 및 계면활성제를 사용할 경우 1회 세척보다 연속 세척이 더 효과적이었으며, 연속 세척에서 물과 계면활성제를 동일하게 분배하는 것이 최적이었다. 물과 계면활성제 사용량 및 연속세척 회수에 따라 최적 계면활성제의 종류가 달라질 수 있었다. 본 모델 활용기법은 오염토양 세척 공법 적용시 복잡한 실험을 수행하기 이전에 계면활성제의 탐색과 최적 공정 설계에 활용될 수 있을 것이다.

Keywords

References

  1. Cookson, J.T. Jr. Bioremediation Engineering: Design and Application, McGraw-Hill (1995)
  2. Cerniglia, C.E. 'Biodegradation of polycyclic aromatic hydrocarbons', Biodegradation, 3, pp. 351-368 (1992) https://doi.org/10.1007/BF00129093
  3. Keith, L.H. and Telliard, W.A. 'Priority pollutants: I-a perspective view', Environ. Sci. Technol., 13, pp. 416-423(1979) https://doi.org/10.1021/es60152a601
  4. West, C.C. and Harwell, J.F. 'Surfactant and subsurface remediation', Environ. Sci. Technol., 26, pp. 2324-2330(1992) https://doi.org/10.1021/es00036a002
  5. Kile, D.E. and Chiou, C.T. 'Water solubility enhancement of DDT and trichlorobenzene by some surfactants below and above the critical micelle concentration', Environ. Sci. Technol., 23, pp. 832-838 (1989) https://doi.org/10.1021/es00065a012
  6. Volkering, F., Breure, A.M., and Rulkens, W.H. 'Microbiological aspects of surfactant use for biological soil remediation', Biodesradation, 8, pp. 401-417 (1998)
  7. 최상일 '오염토양 정화를 통한 지하수 오염 방지:토양세척기법을 중심으로', 지구환경연구소논문집, 8, pp. 47-60(1997)
  8. 염익태, Ghosh, M.M., 안규홍 '계면활성제를 이용한 오염된 토양으로부터의 PAH의 세척', 대한환경공학회지, 19(9), pp. 1111-1124(1997)
  9. Myers, D. Surfactant Science and Technology, 2nd ed., VCH Publishers, Inc.(1992)
  10. Edwards, D.A., Luthy, R.G., and Liu, Z. 'Solubilization of polycyclic aromatic hydrocarbons in micellar nonionic surfactant solutions', Environ. Sci. Technol., 25, pp. 127-133 (1991) https://doi.org/10.1021/es00013a014
  11. Liu, Z., Edwards, D.A., and Luthy, R.G. 'Sorption of nonionic surfactants onto soil', Water Res., 26, pp. 1337-1345 (1992) https://doi.org/10.1016/0043-1354(92)90128-Q
  12. Edwards, D.A, Adeel, Z., and Luthy, R.G. 'Distribution of nonionic surfactant and phenanthrene in a sediment/aqueous system', Environ. Sci. Technol., 28, pp. 1550-1560 (1994) https://doi.org/10.1021/es00057a027
  13. Edwards, D.A., Liu, Z., and Luthy, R.G. 'Surfactant solubilization of organic compounds in soil/aqueous systems', J. Environ. Eng., 120, pp. 5-22 (1994) https://doi.org/10.1061/(ASCE)0733-9372(1994)120:1(5)
  14. Edwards, D.A, Liu Z., and Luthy, R.G. 'Experimental data and modeling for surfactant micelles, HOCs, and soil', J. Environ. Eng., 120, pp. 23-41 (1994) https://doi.org/10.1061/(ASCE)0733-9372(1994)120:1(23)
  15. Zheng, Z. and Obbard, J.P. 'Evaluation of an elevated non-ionic surfactant critical micelle concentration in a soil/aqueous system', Water Res., 36, pp. 2667-2672 (2002) https://doi.org/10.1016/S0043-1354(01)00472-9
  16. Sun, S., InskeeP, W.P., and Boyd, S.A. 'Sorption of nonionic organic compounds in soil-water systems containing a micelleforming surfactant', Environ. Sci. Technol., 29(4), pp. 903-913(1995) https://doi.org/10.1021/es00004a010
  17. Park, J.-W. and Boyd, S.A. 'Sorption of chlorobiphenyls in sediment-water systems containing nonionic surfactants', J Environ. Qual., 28(3), pp. 945-952 (1999) https://doi.org/10.2134/jeq1999.00472425002800030027x
  18. Schwarzenbach, R.P., Gschwend, P.M., and Imboden, D.M Environmental Organic Chemistry, John, Wiley & Sons, New York (1993)
  19. Karickhoff, S.W., Brown, D.S., and Scott, T.A. 'Sorption of hydrophobic pollutants on natural sediments', Water Res., 13, pp. 241-248 (1979) https://doi.org/10.1016/0043-1354(79)90201-X