DOI QR코드

DOI QR Code

Nano Particle Charging Characteristics of Aerosol Charge Neutralizers

에어로졸 중화기의 나노 입자 하전 특성

  • 지준호 (연세대학교 나노과학기술연구단) ;
  • 배귀남 (한국과학기술연구원 지구환경연구센터) ;
  • 황정호 (연세대학교 기계공학과)
  • Published : 2003.10.01

Abstract

Aerosol charge neutralizers with various radioactive sources have been used to apply an equilibrium charge distribution to aerosols of unknown charge distribution. However, the performance of aerosol charge neutralizers is not well known, especially for highly charged particles. Measurements of highly charged particles are needed in air cleaning devices, e.g. electrostatic precipitator, bag filter with a pre-charger, and electrical cyclone. In this study, the particle charging characteristics of two different aerosol charge neutralizers were experimentally investigated for singly charged monodisperse particles and highly charged polydisperse particles. One has radioactive source of $^{85}$ Kr (beta source, 2 mCi) and the other has $^{210}$ Po (alpha source, 0,5 mCi). The air flow rate passing through each aerosol charge neutralizer was changed from 0.2 to 2.5 L/min. The results show that the charge distribution of singly charged monodisperse particles passing through the $^{85}$ Kr aerosol charge neutralizer is well agreed with the Boltzmann equilibrium charge distribution at an air flow rate of 0.3 L/min, However, it deviates from the equilibrium charge distribution when the air flow rates are 0.6, 1,0, and 1,5 L/min, On the other hands, the effect of air flow rate is insignificant for the $^{210}$ Po aerosol charge neutralizer. The non-equilibrium character in charge distribution of highly charged polydisperse particles passing through the $^{85}$ Kr aerosol charge neutralizer greatly depends on the air flow rate, however it is insensitive to the air flow rate for the $^{210}$ Po aerosol charge neutralizer.

Keywords

References

  1. Covert, D., Wiedensohler, A., and Russell, L., 1997, 'Particle Charging and Transmission Effciencies of Aerosol Charge Neutralizers,' Aerosol Sci. Tech., Vol. 27, pp. 206-214 https://doi.org/10.1080/02786829708965467
  2. Hoppel, A. and Frick, G. M., 1986, 'Ion-Aerosol Attachment Coefficients and the Steady-Stage Charge Distributions on Aerosols in a Bipolar Ion Environment,' Aerosol Sci. Tech, Vol. 5, pp. 1-21 https://doi.org/10.1080/02786828608959073
  3. Fuchs, N. A., 1964, The Mechanics of Aerosols, Pergamon Press, Oxford
  4. Adachi, M., Kousaka, Y., and Okuyama, K., 1985, 'Unipolar and Bipolar Diffusion Charging of Ultrafine Aerosol Particles,' J. Aerosol Sci., Vol. 16, pp. 109-123 https://doi.org/10.1016/0021-8502(85)90079-5
  5. Wiedensohler, A., 1988, 'An Approximation of the Bipolar Charge Distribution for Particles in the Submicron Size Range,' J. Aerosol Sci., Vol. 19, pp. 387-389 https://doi.org/10.1016/0021-8502(88)90278-9
  6. Hoppel, A. and Frick, G. M., 1990, 'The Nonequilibrium Character of the Aerosol Charge Distributions Produced by Neutralizers,' Aerosol Sci. Tech., Vol. 12, pp. 471-496 https://doi.org/10.1080/02786829008959363
  7. Kousaka, Y., Adachi, M., Okuyama, K., Kitada, N., and Motochi, T., 1983, 'Bipolar Charging of Ultrafine Aerosol Particles,' Aerosol Sci. Tech, Vol. 2, pp. 421-427 https://doi.org/10.1080/02786828308958645
  8. Liy, B. Y. H. and Pui, D. Y. H., 1977, 'On Unipolar Diffusion Charging of Aerosols in the Continuum Regime,' J. Colloid Interface Sci., Vol. 58, pp. 142-149 https://doi.org/10.1016/0021-9797(77)90377-0
  9. Liu, B. Y. H. and Pui, D. Y. H., Lin, B. Y., 1986, 'Aerosol Charge Neutralization by a Radioactive Alpha Source,' Part. Charact., Vol. 3, pp. 111-116 https://doi.org/10.1002/ppsc.19860030304
  10. Liu, B. Y.H. and Pui, D. Y. H., 1986, 'Aerosol Charging and Neutralization and Electrostatic Discharge in Clean Rooms,' The J. Enviromental Sci., Vol. 33, pp. 42-46
  11. Alonso, M., Kousaka, Y., Nomura, T., Hashimoto, N., and Hashimoto, T., 1997, 'Bipolar Charging and Neutralization of Nanometer-Sized Aerosol Particles,' J. Aerosol Sci., Vol. 28, pp. 1479-1490 https://doi.org/10.1016/S0021-8502(97)00036-0
  12. Alonso, M., Alguacil, F. J., Nomura, T., and Kousaka, Y., 2001, 'Examination of After-charging Effects Downstream of an Aerosol Neutralizer,' J. Aerosol Sci., Vol. 32, pp. 289-294 https://doi.org/10.1016/S0021-8502(00)00083-5
  13. Reischl, G. P., Makela, J. M., Karch, R., and Necid, J., 1996, 'Bipolar Charging of Ultrafine Particles in the Size Range below 10 nm,' J. Aerosol Sci., Vol. 27, pp. 931-949 https://doi.org/10.1016/0021-8502(96)00026-2
  14. Mayya, Y. H., and Sapra, B. K., 1996, 'Variation of the Aerosol Charge Neutralization Coefficient in the Entire Particle Size Range,' J. Aerosol Sci., Vol. 27, pp. 1169-1178 https://doi.org/10.1016/0021-8502(96)00051-1
  15. Adachi, M., Okuyama, K., Kousaka, Y., Kozuru, H., and Pui, D. Y. H., 1989, 'Bipolar Diffusion Charging of Aerosol Paticles Under High Particle/Ion Concentration Ratios,' Aerosol Sci. Tech., Vol. 11, pp. 144-156 https://doi.org/10.1080/02786828908959307
  16. Hinds, W. C., 1999, Aerosol Technology:Properties, Behavior, and Measurement of Airborne Particles, John Wiley & Sons, Inc
  17. Ji, J. H., Pae, Y. I., Hwang, J., and Bae, G. N., 2002, 'Size Distributions of Micro/Nano Meter Sized NaCl Particles Generated from an Electrically Heated Tube Furnace,' Proceedings of the KSME 2002 Spring Annual Meeting B, pp. 1232-1237
  18. Baumgartner, H. and Loeffler, F., 1986, 'Particle Collection in Electret Fibers Filters: A Basic Theoretical and Experimental Study,' Filtration and Separation, Sep./Oct., pp. 346-351
  19. Ji, J. H., Bae, G. N., and Hwang, J., 2003, 'Effect of Particle Clogging in Orifices on the Particle Collection Efficiency of a Micro-Orifice Impactor,' KSME Journal B, Vol. 27, pp. 197-205 https://doi.org/10.3795/KSME-B.2003.27.2.197