Estimation of Oxygen Consumption Rate and Organic Carbon Oxidation Rate at the Sediment/Water Interface of Coastal Sediments in the South Sea of Korea using an Oxygen Microsensor

산소 미세전극을 이용한 남해연안 퇴적물/해수 계면에서 산소소모율 및 유기탄소 산화율 추정

  • Lee, Jae-Seon (South Sea Fisheries Research Institute, NFRDI) ;
  • Kim, Kee-Hyun (Department of Oceanography, Chungnam National University) ;
  • Yu, Jun (South Sea Fisheries Research Institute, NFRDI) ;
  • Jung, Rae-Hong (South Sea Fisheries Research Institute, NFRDI) ;
  • Ko, Tae-Seung (South Sea Fisheries Research Institute, NFRDI)
  • 이재성 (국립수산과학원 남해수산연구소) ;
  • 김기현 (충남대학교 해양학과) ;
  • 유준 (국립수산과학원 남해수산연구소) ;
  • 정래홍 (국립수산과학원 남해수산연구소) ;
  • 고태승 (국립수산과학원 남해수산연구소)
  • Published : 2003.11.01

Abstract

We used an oxygen microelectrode to measure the vertical profiles of oxygen concentration in sediments located near point sources of organic matter. The measurements were carried out between 13th and 17th May, 2003, in semi-closed bay and coastal sediments in the central part of the South Sea. The measured oxygen penetration depths were extremely shallow and ranged from 1.30 to 3.80 mm. This suggested that the oxidation and reduction reactions in the early diagenesis should be studied at the mm depth scale. In order to estimate the oxygen consumption rate, we applied the one-dimension diffusion-reaction model to vertical profiles of oxygen near the sediment/water interface. Oxygen consumption rates were estimated to be between 10.8 and 27.6 mmol O$_2$ m$\^$-2/ day$\^$-1/(average: 19.1 mmol O$_2$ m$\^$-2/ day$\^$-1/). These rates showed a positive correlation with the organic carbon of the sediments. The corresponding benthic organic carbon oxidation rates calculated using an modified Redfield ratio (170/110) at the sediment/water interface were in the range of 89.5-228.1 mg C m$\^$-2/ day$\^$-1/(average: 158.0 mg C m$\^$-2/ day$\^$-1/). We suggest that these results are maximum values at the presents situation in the bay because the sampling sites were located near point sources of organic materials. This study will need to be carried out at many coastal sites and throughout the seasons to allow an understanding of the mechanisms of eutrophication e.g. the spatial distribution of oxygen consumption within the oxic zone and hypoxic conditions in the coastal sea.

남해 중부해역 반폐쇄성 만과 유기오염 유입원이 다수 존재하는 7개 연안에서 2003년 5월 13일부터 17일에 걸쳐 산소 미세전극을 이용 공극수내 산소의 수직분포를 측정하였다. 관측된 산소투과깊이 범위는 1.30∼3.80 mm로 매우 작았다. 극히 얕은 산화층 존재는 초기속성 작용 연구 중 산화$.$환원 반응연구를 최소한 mm 단위로 연구할 필요성을 제시한다. 공극수 수직분포에 1차 확산-반응 모델을 적용하여 추정된 퇴적물/해수 계면에서 산소소모율 범위 는 10.8∼27.6 mmol $O_2$ m$^{-2}$ day$^{-1}$(평균 19.1 mmol $O_2$ m$^{-2}$ day$^{-1}$)였고 퇴적물 유기탄소 농도와 양의 상관관계를 보였다. 또한 플럭스에 산소 대 탄소 비 (170/110)를 적용하여 추정한 유기탄소 산화율은 89.5∼228.1 mg C m$^{-2}$ day$^{-1}$(평균: 158.0 mg C m$^{-2}$ day$^{-1}$)였다. 이들 결과는 남해중부 해역중 유기물 유입이 많은 지역을 대상으로 한 결과로 남해 평균 값 중 최대값으로 생각되며 연안환경의 부영양화 및 빈산소 수괴 형성 기작을 밝히기 위해서는 이러한 연구가 보다 많은 지역에서 계절적으로 수행되어져야 할 것으로 생각한다.

Keywords

References

  1. 한국해양학회지- 바다 v.8 한국남해 연안 광양만 표층 퇴적물의 와편모조류 시스트분포 특성과 식물프랑크톤 군집과의 비교 김소영;문창호;조현진
  2. 한국수산학회 v.28 득량만의 저서동물 분포 마채우;홍성윤;임현식
  3. 해양환경학회지 v.9 가막만 북부해역의 해양환경과 식물프랑크톤 군집의 변동 특성2. 수질환경과 엽록소 a량의 변동특성 윤양호
  4. 한국수산학회지 v.29 가막만 환경용량 산정(Ⅰ)-생태계모델을 이용한 기초생산력 산정 조은일;박청길;이석모
  5. Con. Shelf Res. v.23 Organic carbon budget at the sediment-water interface on Gulf of Lions continental margin Accrnero,A.;P.Picon;F. de Boviie;B.Charriure;R.Buscail https://doi.org/10.1016/S0278-4343(02)00168-1
  6. Limnol. Oceanoger. v.32 Benthic respiratiion measured by total carbonate production Anderson,L.G.;P.O.J.Hall;A.Iverfelt;M.M.Rutgers van der Leeff;B.Sund by;S.F.G.Westerlund
  7. Global Biogeochemical Cysles v.8 Redfield rations remineralization of determined by nutrient data analysis Anderson,L.a.;J.L.Sarmiento https://doi.org/10.1029/93GB03318
  8. Limnol. Oceanogr. v.37 Benthic oxygen fluxes on the Washington shelf and slope: a comparision of in situ mocroelectode and chamber flux measurments Archer,D.;A.Devol https://doi.org/10.4319/lo.1992.37.3.0614
  9. Limnol. Oceanogr. v.43 Interpretation of measured concentration profiles in sediment pore water Berg,P.N.R.Petersen;S.Rysgaard https://doi.org/10.4319/lo.1998.43.7.1500
  10. Early diagenesis: A Theoretica; Approach Berner,R.A.
  11. Diagenetic Models and Their Implementation Boudreau,B.P.
  12. J. Ecol. v.56 Models describing the diffusion of oxygen and other mobile constituents across mud-water interface Bouldin,D.R. https://doi.org/10.2307/2258068
  13. Tellus v.72 Gas exchange rates between air and sea Broecker,W.S.;T.H.Peng
  14. Geochim. Cosmochim. Acta v.16 Fluxes of dissolved organic carbon from Chesapeake Bay sediments Burdige,D.J.;J.Homstead
  15. Mar. Chem. v.52 Oxygen penetration depths and fluxes in marine sediments Cai,W.J.;F.L.Sayles https://doi.org/10.1016/0304-4203(95)00081-X
  16. Geochem. Cosmochim. Acta v.51 Biogeochemical cycling in an organich rich coastal marine basin.7.sulfur mass balance, oxygen uptake, and sulfide retention Chanton,J.P.;C.S.Martens;M.B.Goldharber https://doi.org/10.1016/0016-7037(87)90211-0
  17. Con. Shelf Res. v.9 Benthic processes across mixed terrigenous-carbonate sedimentary facies on the central Great Barrie Reef continental shelf Deniel M. Alongi https://doi.org/10.1016/0278-4343(89)90034-4
  18. Mar. Chem. v.20 An annotated nitrogen budget calculation for the Northern Adriatic Sea DeGobbis,D.;M.Gilmartin;N.Revelante https://doi.org/10.1016/0304-4203(86)90037-X
  19. Sediment flux modeling DiToro,D.M
  20. Progr. Oceanogr. v.52 On the oxidation and burial of organic carbon in sediments of the Iberian margin and Nazare Canyon(NE Atlantic) Epping,E.;C van der Zee;K.Soetaert;W.Helder https://doi.org/10.1016/S0079-6611(02)00017-4
  21. Con. Shelf Res. v.17 Oxygen Budgets calculated from in situ oxygen microprofiles for Northem Adriatic sediments Epping,E.H.G.;W.Helder https://doi.org/10.1016/S0278-4343(97)00039-3
  22. Geochem. Cosmochim. Acta v.43 Early oxidation of organic matter in pelagic sediments of the estern equatorial Atlantic: suboxic diagenesis Froelich,P.N.;G.P.Klinkhammer;M.L.Bender;N.A.Bender;G.R.Luedtke;G.R.Heath;D.Cullen;P.Dauphin;D.Hammond;B.Hartman;V.Maynard https://doi.org/10.1016/0016-7037(79)90095-4
  23. Limnol. Oceanogr. v.39 Effects on the benthic diffusive boundary layer imposed by microelectrodes Glud,R.N.;J.K.Gunderson;N.P.Revsbech;B.B.Jorgensen https://doi.org/10.4319/lo.1994.39.2.0462
  24. Deep-Sea Res. v.41 Diffusive and total oxygen uptake of deep-sea sediments in the eastern South Atlantic Ocean: In situ and laboratory measurement Glud,R.N.;J.K.Gunderson;B.B.Jorgensen;N.P.Revsbech;H.D.Schulz https://doi.org/10.1016/0967-0637(94)90072-8
  25. Mar. Ecol. Prog. Ser. v.186 Benthic in situ respiration in the upwelling area off centeral chile Glud,R.N.;J.K.Gunderson;O.Holby https://doi.org/10.3354/meps186009
  26. Limnol. Oceanogr. v.48 Sersonal dynamics of benthic O₂ uptake in a semienclosed bay: Importance of diffusion and faunal activity Glud,R.N.;J.K.Gunderson;H.Roy;B.B.Jorgensen https://doi.org/10.4319/lo.2003.48.3.1265
  27. Nature v.345 Microstructure of diffiusivity boundary layers and oxygen uptake of the sea floor Gunderson,J.K.;B.B.Jorgensen https://doi.org/10.1038/345604a0
  28. J. Korean Soc. Oceanogr. v.32 The partitioning of organic carbon cycle in coastal sediments of Kwangyamg Bay Han,M.W.;I.H.Lee;K.H.Kim;I.Noh
  29. Geochem. Cosmochim. Acta v.51 Early diagenesis of amino acids and organic matter in two coastal marine sediments Henrichs,S.M.;J.W.Farrington https://doi.org/10.1016/0016-7037(87)90002-0
  30. Limnol. Oceanogr. v.5 The sulfur cycle of a coastal marine sediment(Limfjorden, Denmark) Jorgensen,B.B.;N.P.Revsbech
  31. Limol. Oceanorg. v.30 Diffusive boundary layers and the oxygen uptake of sediments and deteritus Jorgensen,B.B.;N.P.Revsbech https://doi.org/10.4319/lo.1985.30.1.0111
  32. Limol. Oceanogr. v.30 A new bell jar/microelectrode method to measure changing oxygen fluxes in illuminated sediments with a microalgal cover Lindeboom,H.J.;A.J.J.Sandee;H.A.J.Driessche https://doi.org/10.4319/lo.1985.30.3.0693
  33. Marine Geololgy v.139 Early diagenetic processess in recent sediments of the Gulf of StLawrence: phosphorous, carbon and iron burial rates Louchouarn,P.;M.Lucotte,E.Duchemin;A. de Vernal https://doi.org/10.1016/S0025-3227(96)00110-7
  34. J. Exp. Mar. Bio. Ecol. v.285-286 Oxygen demand in coastal marine sediments: comparing in situ microelectrodes and laboratory core incubations Rabouille,C.;L.Denis;K.Dediu;G.Stora;B.Lansard;C.Grenz https://doi.org/10.1016/S0022-0981(02)00519-1
  35. Mar. Chem. v.13 The Partitioning of organic carbon fluxes and sedimentary organic matter decomposition rates in the ocean Reimers,C.E.;E.Suess https://doi.org/10.1016/0304-4203(83)90022-1
  36. Geochem. Cosmochim. Acta v.48 Oxygen consumption rates in pelagic sediments from the Central Pacific: First estimates from microelectrode profiles Reimers,C.E.;S.Kalhorn;S.R.Emerson;K.H.Nealson https://doi.org/10.1016/0016-7037(84)90183-2
  37. Adv. Micro. Biol. v.9 Microelectrodes: Their Use in Microbial Ecology Revsbech,N.P.;B.B.Jorgensen
  38. Deep-See Res. I. v.48 Organic carbon flux and remineralization in surface sediment from the northern North Atlantic derived from pore-water oxygen microprofiles Sauter,E.J.;M.Schluter;E.Suess https://doi.org/10.1016/S0967-0637(00)00061-3
  39. Deep-See Res. v.34 Organic Carbon mineralization in the Santa Catalina Basin: benthic boundary later metabolism Smith,K.L.;A.F.Carlucci;R.a.Jahnke;D.B.Craven https://doi.org/10.1016/0198-0149(87)90081-1
  40. Water Res. v.23 Benthic nutrient remineralization and oxygen concumption in the coastal area of Hiroshima Bay Tohru,S.;I.Hirofumi;D.Etsuji https://doi.org/10.1016/0043-1354(89)90046-8
  41. Limnol. Oceanogr. v.27 Diffusion coefficients in nearshore marine sediments Ullman,W.J.;R.C.Aller https://doi.org/10.4319/lo.1982.27.3.0552