Nonlinear Sound Amplification and Directivity Due to Underwater Bubbles

수중 기포에 의한 비선형 음파의 증폭과 지향성

  • 김병남 (성균관대학교 물리학과 음향학연구실.BK21 물리연구단) ;
  • 최복경 (한국해양연구원 지구환경 연구본부) ;
  • 윤석왕 (성균관대학교 물리학과 음향학연구실.BK21 물리연구단)
  • Published : 2003.05.01

Abstract

Since a bubble in water is a highly nonlinear acoustic scatterer, the acoustic scattered waves from underwater bubbles show highly nonlinear acoustic properties. These acoustic scattered waves can be observed at the second or higher harmonics as well as at the fundamental primary frequency of incident acoustic wave. When two primary acoustic waves of different frequencies are incident on a bubble, the acoustic scattered waves can be also observed at the sum and the difference frequencies of the primary waves. In this study, when the two primary acoustic waves were incident on a bubble screen in water, we observed that the amplitude of difference frequency wave was amplified by the bubble nonlinearity and its directivity was oriented in the propagation directions of primary waves. The directivity of scattered difference frequency wave was analyzed as a coherent scattering for virtual source by using the directivity of the primary acoustic wave.

수중에서 기포는 비선형성이 강한 음향 산란체로서 수중 기포들로부터 산란된 음파들은 강한 비선형 음향특성을 보인다. 입사 음파의 산란된 음파들은 기본 주파수에서뿐만 아니라 배진동 또는 고차진동 주파수들에서도 관측된다. 서로 다른 주파수의 두 음파가 기포에 입사되는 경우, 산란된 음파들은 입사 음파들의 합 및 차주파수에서도 관측될 수 있다. 본 연구에서는 수중에 형성된 기포막에 두 음파가 입사되는 경우, 기포의 비선형성에 의해 차주파수 음파의 진폭이 증폭되고 두 입사 음파의 전파방향으로 지향성이 나타남을 관측하였다. 산란된 차주파수 음파의 지향성은 일차 음원의 지향성을 사용하여 가상음원에 대한 결맞음 산란특성으로 해석하였다.

Keywords

References

  1. Sov. Phys. Acoust. v.18 Emission of harmonic and combination frequency waves by air bubbles E.A.Zabolotskaya;S.I.Soluyan
  2. Sov. Phys. Acoust. v.30 Nonlinear sound scattering by a bubble layer L.M.Kustov;V.E.Nazarov;A.M.Sutin
  3. Natural Physical Sources of Underwater Sound Nonlinear sound scattering from subsurface bubble layers L.A.Ostrovsky;A.M.Sutin;B.R.Kerman(ed.)
  4. J. Acoust. Soc. Am. v.75 no.5 Bubble size measurements using the nonlinear mixing of two frequencies V.L.Newhouse;P. Mohana Shankar https://doi.org/10.1121/1.390863
  5. J. Acoust, Soc. Am. v.78 no.1 Ultrasonic measurement of bubble cloud size profiles J.Y.Chapelon;P.M.Shankar;V.L.Newhouse https://doi.org/10.1121/1.392558
  6. J. Acoust. Soc. Am. v.103 no.5 Nonlinear acoustic method for bubble density measurements in water A.M.Sutin;S.W.Yoon;E.J.Kim;I.N.Didenkulov https://doi.org/10.1121/1.422756
  7. J. Acoust. Soc. Am. v.106 no.5 Nonlinear doppler effect and it suse for bubble flow velocity measurement I.N.Didenkulov;S.W.Yoon;A.M.Sutin;E.J.Kim https://doi.org/10.1121/1.428079
  8. J. Acoustic. Soc. Am. v.35 Parametric acoustic array P.J.Westervelt https://doi.org/10.1121/1.1918525
  9. Bottom-Interacting Ocean Acoustics A low frequency parametric research tool for ocean acoustics T.G.Muir;L.A.Thompson;L.R.Cox;H.G.Frey;W.A.Kuperman(ed.);F.B.Jensen(ed.)
  10. Acoust. Lett. v.6 Parametric acoustic radiator with a bubble layer L.Kustov;V.Nazarov;L.Ostrovsky;A.M.Sutin;S.Zamolin
  11. Sov. Phys. Acoust. v.30 Far-field characteristics of parametric sound radiator with a bubble layer V.E.Nazarov;A.M.Sutin
  12. Sov. Phys. Acoust. v.34 Optimization of saturated-limited parametric radiators A.M.Lerner;A.M.Sutin
  13. J. Acoust. Soc. Am. v.100 no.6 Low fequency acoustic wave generation in a resonant bubble layer O.A.Druzhinin;L.A.Ostrovsky;A.Prosperetti https://doi.org/10.1121/1.417222
  14. J. Acoust. Soc. Am. v.104 no.2 Nonlinear low-frequency sound generation in a bubble layer: Theory and laboratory experiment L.A.Ostrovsky;A.M.Sutin;I.A.Soustova;A.I.Matveyev;A.I.Potapov https://doi.org/10.1121/1.423308
  15. IEEE J. Oceanic Eng. v.26 no.1 Acoustic bubble counting technique using sound speed extracted from sound attenuation B.K.Choi;S.W.Yoon https://doi.org/10.1109/48.917945
  16. J. Acoust. Soc. Am. v.95 Bubble population measurements with a parametric array M.Gensane https://doi.org/10.1121/1.409982
  17. J. Korean Phys. Soc. v.40 no.2 Acoustic pressure reflection coefficients of a subsurface bubble layer in water K.I.Lee;B.K.Choi;S.W.Yoon
  18. Acoustical Oceanography C.S.Clay;H.Medwin
  19. Fundamentals of Acoustics(3rd ed.) L.E.Kinsler;A.R.Frey;A.B.Coppens;J.V.Sanders
  20. J. Acoust. Soc. Am. v.94 Near-field characteristics of circular piston radiators with simple support C.He;AI.E.Hay https://doi.org/10.1121/1.407068
  21. J. Acoust. Soc. Am. v.53 High-speed method for computing the exact solution for the pressure variations in the nearfiedls of a baffled piston J.C.Lockwood;J.G.Willette https://doi.org/10.1121/1.1913385
  22. J. Acoust. Soc. Am. v.59 Asymptotic behavior or the acoustic nearfield of a circular piston P.R.Stepanishen https://doi.org/10.1121/1.380939
  23. J. Acoust. Soc. Am. v.74 A new rigorous expansion for the velocity potential of a circular piston source T.Hasegawa;N.Inoue;K.Matsuzawa https://doi.org/10.1121/1.389937
  24. J. Acoust. Soc. Am. v.80 Continuous-wave pressure fields of ultrasonic transducers D.A.Hutchins;H.D.Mair;P.A.Puhach;A.J.Osei https://doi.org/10.1121/1.394164
  25. J. Acoust. Soc. Am. v.88 Acoustic radiation force on a rigid sphere in the near field of a circular piston vibrator T.Hasegawa;T.Kido;S.Takeda;N.Inoue;K.Matsuzawa https://doi.org/10.1121/1.400316
  26. Acoust. Phys. v.42 Nonlinear interaction of acoustic waves in gas-saturated marine sediment S.V.Karpov;Z.Klusek;A.L.Matveev;A.I.Potapov;A.M.Sutin
  27. Underwater Electroacoustic measurement R.J.Bobber
  28. Frontiers of Nonlinear Acoustics: Proceedings of 12th ISNA Experimental of parametric amplification using nonlinear vibration of bubble under water T.Asada;Y.Watanabe:M.F.Hamilton(ed.);D.T.blackstock(ed.)
  29. Acoust. Soc. Am. Nonlinear Acoustics R.T.Beyer