DOI QR코드

DOI QR Code

Screening of Fibrinolytic Enzyme Producing from Microorganisms and Optimum Conditions of Enzyme Production

혈전 분해효소 생산균의 탐색 및 효소생산 최적조건의 조사

  • Published : 2003.10.01

Abstract

A strain of potential producer of fibrinolytic enzyme was isolated from Korean fermented food. The isolated bacterium was identified and named as Bacillus brevis KJ-23. The optimal condition of the medium for the production of fibrinolytic enzyme from Bacillus brevis KJ-23 was nutrient broth with 0.5% D-ribose, 0.5% malt extract and 0.3% $K_2$HPO$_4$. The optimum pH, temperature and fermentation time for the enzyme production were pH 7.0, 3$0^{\circ}C$ and 24 hr, respectively.

전통식품(고추장, 된장, 쌈장, 젓갈류, 김치)으로부터 혈전 용해능이 있는 미생물을 분리한 후 그 중 fibrin용해능이 가장 우수한 균주 KJ-23을 최종 선발하였다. 최종 선별한 균주 KJ-23을 Microbial identification system(MIS)의 Sherlock 95 program을 이용하여 동정한 결과 Bacillus brevis KJ-23으로 동정하였다. Bacillus brevis KJ-23균주의 최대혈전용해 생산을 위한 최적배지화 조건을 검토한 결과 nutrient broth, D-ribose 0.5%, malt extract 0.5%, $K_2$HPO$_4$ 0.3% 첨가시 최고의 활성을 보였으며, 금속염을 첨가했을 경우에는 오히려 활성이 감소하는 경향을 보여 금속원은 최적 배지화 조건에서 첨가하지 않았다. 또한 pH7.0, 3$0^{\circ}C$에서 진탕배양했을 경우 최대활성을 보였으며, 시간별 경시효과에서는 24시간에서 혈전용해능이 최대를 나타내었다.

Keywords

References

  1. Noh KA, Kim DH, Choi NS, Kim SH. 1999. Isolation of fibrinolytic enzyme producing strains from kimchi. Korean J Food Sci Technol 31: 219-223.
  2. Sasaki K, Moriyama S, SumiH, Toki N, Robbins KC. 1985. The transport of 125I-labeled human high molecular weight urokinase across the intestinal tract in a dog model with stimulation of synthesis and/or release of plasminogen activators. Blood 66: 67-75.
  3. Wun TC, Schleuning WD, Reich E. 1982. Isolation and characterization of urokinase from human plasma. Biol Chem 257: 3276-3283.
  4. Lijnen H, Van Hoef R, Coolen D. 1992. Interaction of streptokinase with different molecular forms of plasminogen. Biochem Biophys, ACTA 144: 1118-1122.
  5. Pennica DW. Holmes E, Kohr WJ, HarkinsRN, VeharGA, Ward CA, Bennett WF, Yelberton E, Seeburg PH, Heyneker HL, Goeddel DV, Collen D. 1983. Cloning and expression of human tissue-type plasminogen activator cDNA in E. coli. Nature 301: 214-221. https://doi.org/10.1038/301214a0
  6. Mihara H, Sumi H, Yontta T, Mizumoto H, Ikeda R, Seiki M, Maruyama M. 1991. A novel fibrinolytic enzyme extracted from the earthworm, Lumbricus rubellus. Jap J Physiology 41: 461-472. https://doi.org/10.2170/jjphysiol.41.461
  7. Nobuyoshi N, Mihara H, Sumi H. 1993. Characterization of potent fibrinolytic enzymes in earthworm, Lumbricus rubellus. Biosci Biotech Biochem 57: 1726-1730. https://doi.org/10.1271/bbb.57.1726
  8. Sumi H, Nakajima N, Mihara H. 1993. A very stable and potent fibrinolytic enzyme found in earthworm. Lumbricus rubellus, Comp Biochem Physiol 106: 763-766.
  9. Fujita M, Nomura K, Hong K, Ito Y, Asada A, Nishimuro S. 1993. Purification and characterization of a strong fibrinolytic enzyme (nattokinase) in the vegetable cheese Natto, a popular soybean fermented food in Japan. Biochem Biophys Res Comm 197: 1340-1347. https://doi.org/10.1006/bbrc.1993.2624
  10. Sumi H, Hamade H, Tsushima H, Mihara H, Muraki H. 1987. A novel fibrinolytic enzyme (nattokinase) in the vegetable cheese Natto, a typical and popular soybean fermented food in Japaneese diet. Experientia 43: 1110-1111. https://doi.org/10.1007/BF01956052
  11. Jang YK, Yang OS, Kang JO, Kong IS, Kim JO. 1995. Fibrinolysis of fermented kimchi. Korean J Life Science 5: 203-210.
  12. Choi WA, Lee JO, Lee KH, Park SH. 1998. Effects of environmental and nutritional conditions on fibrinolytic enzyme production from Bacillus subtilis BK-17 in flask culture. Korean J Biotechnol Bioeng 13: 491-496.
  13. Chung YJ. 1999. Isolation and characterization of a bacterium with a fibrinolytic activity. Korean J Biotechnol Bioeng 14: 103-108.
  14. Choi NS, Seo SY, Kim SH. 1999. Screening of mushrooms having fibrinolytic activity. Korean J Food Sci Technol 131: 553-557.
  15. Heo S, Lee SK, Joo HK. 1998. Isolation and identification of fibrionlytic enzyme producing strain from traditional food. Agricultural Chemistry and Biotechnology 41: 119-124.
  16. Jang SA, Kim MH, Lee MS, Lee MJ, Ji OH, Oh TK, Sohn CB. 1999. Isolation and identification of fibrinolytic enzyme producing strains from shrimp Jeot-Gal, a tiny salted shrimps, and medium optimization for enzyme production. Korean J Food Sci Technol 131: 1648-1653.
  17. Kim YT, Kim OK, Oh HI. 1995. Screening and identification of the fibrinolytic bacterial strain from chungkook-jang. Kor J Appl Microbiol Biotechnol 23: 1-5.
  18. Astrup T, Mullertz S. 1952. The fibrin plate method for estimating fibrinolytic activity. Archs Biochem Biophys 40: 346-347. https://doi.org/10.1016/0003-9861(52)90121-5
  19. Chang YH, Kim JK, Kim HJ, Yoon JH, Kim WY, Choi, YW Lee WJ, Kim YB, Park YH. 1999. Characteristics of Lactobacillus reuterii BSA-131 isolated from swine intestine. Kor J Appl Microbiol Biotecnol 27: 23-27.
  20. MIDI, Inc. Operating manual Ver. 6. Sherlock Microbial Identification System.
  21. Lee SK, Heo S, Bae DH, Choi KH. 1998. Medium optimization for fibrinolytic enzyme production by Bacillus subtilis KCK-7 isolated from Korean traditional chungkookjang. Kor J Appl Microbiol Biotechnol 26: 226-231

Cited by

  1. Isolation of Fibrinolytic Enzyme and β-Glucosidase Producing Strains from Doenjang and Optimum Conditions of Enzyme Production vol.33, pp.2, 2004, https://doi.org/10.3746/jkfn.2004.33.2.439