A Study on Ignitability and Heat Release Rate Characteristics of Rigid Polyurethane Foam

경질 폴리우레탄폼의 착화성 및 열방출특성 연구

  • 공영건 (경기대학교 자연과학부 화학과) ;
  • 이두형 (한국화재보험협회부설 방재시험연구원)
  • Published : 2003.12.01

Abstract

In this study; the ignition and heat release rate characteristics of rigid polyurethane foam were investigated in accordance with setchkin ignition tester and cone calorimeter which is using oxygen consumption principle. In the ignition temperature study; flash-ignition temperature was $383^{\circ}C$-$390^{\circ}C$, self-ignition temperature was$ 493^{\circ}C$∼495$^{\circ}C$. The self-ignition temperature of rigid polyurethane foam was about $100^{\circ}C$ higher than the flash-ignition temperature. In the cone calorimeter study, the time to ignition of rigid polyurethane foam was faster as the external heat flux increase. In the same heat flux level, the time to ignition was faster as the density of rigid polyurethane foam decrease. Also the heat release rate was the largest value at the heat flux of /$50 ㎾\m^2$ and had a tendency of increase as the heat flux level and density increase. In the standpoint of time to ignition and heat release rate, the fire performance of rigid polyurethane foam was influenced by the applied heat flux level and density and the flashover propensity classified by Petrella's proposal was high.

본 연구에서는 Setchkin 착화성시험장치와 산소소비원리를 이용한 콘칼로리미터를 사용하여 난연처리되지 않은 경질우레탄폼의 착화특성 및 열방출특성 및 플래쉬오버 가능성에 대하여 연구하였다. 연구결과 경질폴리우레탄폼의 유도발화온도(FIT)는 $383^{\circ}C$$390^{\circ}C$, 자연발화온도(SIT)는 $493^{\circ}C$$495^{\circ}C$로 나타났으며 자연발화온도가 유도발화온도에 비해 약 $100^{\circ}C$ 높게 나타났다. 콘칼로리미터실험에서는 착화시간은 heat flux의 크기가 증가할수록 빨라졌으며 동일한 heat flux 크기에서는 밀도가 작을수록 착화시간은 짧게 나타났다. 열방출율은 $50 ㎾\m^2$에서 가장 크게 나타났으며, 최대열방출율의 경우 heat flux의 크기와 밀도가 커질수록 증가하는 경향을 보였다. 착화시간과 열방출율의 관점에서 경질폴리우레탄폼의 화재성능은 가해진 heat flux의 크기와 밀도에 큰 영향을 받는 것으로 나타났으며, Petrella의 제안방법에 의해 플래쉬오버 가능성을 분류한 결과 플래쉬오버 가능성이 큰 것으로 분류되었다.

Keywords

References

  1. 폴리우레탄 - 다양한 응용과 적용, 한국바스프(주)(1995)
  2. Craig L. Beyler and Marcelo M. Hirschler, 'SFPE Handbook of Fire Protection Engineering', 3rd ed., NFPA, Quincy, MA, pp.1-128(2002)
  3. Marcelo M. Hirschler, Fire Performance of Organic Polymers, Thermal Decomposition and Chemical Composition, 2001 American Chemical Society Symposium Series 797, pp.293-300(2001)
  4. Babrauskas and S. J. Grayson, Heat Release in Fires, Elselvier Science Publishing Co., New York(1992)
  5. 이근원, 김광응, '콘칼로리미터를 이용한 플라스틱 단열재의 화재특성', 화재 . 소방학회 논문지, Vol. 17, No. 1, pp.76-83(2003)
  6. ASTM D 1929, Standard Test Method for Ignition Properties of Plastics, ASTM, Philadelphia(1991)
  7. ASTM E 1354, Standard Test Method for Heat and Visible Smoke Release Rates for Materials and Products using an Oxygen Consumption Calorimeter, ASTM, Philadelphia(1990)
  8. ISO 5660-1, Reaction to Fire, Part 1. Rate of Heat Release from Building Products (Cone Calorimeter), Genever(2002)
  9. Fu-Yu Hshieh, David B. Hirsch, and D. Beeson, Ignition and Combustion of Low-density Polyimide Foam, Fire and Materials, Vol. 27, pp.119-130(2003) https://doi.org/10.1002/fam.820
  10. R. V. Petrella, The Assessment of Full-scale Fire Hazards from Cone Calorimeter Data, Journal of Fire Sciences, Vol. 12, pp.14-43(1994) https://doi.org/10.1177/073490419401200102