DOI QR코드

DOI QR Code

Growth of SiC Nanorod Using Tetramethylsilane

테트라메틸사일렌을 이용한 탄화규소 나노로드의 성장

  • Rho, Dae-Ho (Korea University, Department of Materials Science and Engineering) ;
  • Kim, Jae-Soo (Korea Institute of Science and Technology, Metal Process Researching Center) ;
  • Byun, Dong-Jin (Korea University, Department of Materials Science and Engineering) ;
  • Yang, Jae-Woong (Daejin University, Department of Advanced Materials Science and Engineering) ;
  • Kim, Na-Ri (Korea University, Department of Materials Science and Engineering)
  • 노대호 (고려대학교 재료공학과) ;
  • 김재수 (한국과학기술연구원 금속공정연구센터) ;
  • 변동진 (고려대학교 재료공학과) ;
  • 양재웅 (대진대학교 신소재공학과) ;
  • 김나리 (고려대학교 재료공학과)
  • Published : 2003.06.01

Abstract

SiC nanorods have been grown on Si (100) substrate directly. Tetramethylsilane and Ni were used for SiC nanorod growth. After 3minute, SiC nanorod had grown by CVD. Growth regions ware divided by two regions with diameter. The First region consisted of thin SiC nanorods having below 10 nm diameter, but second region's diameter was 10∼50 nm. This appearance shows by reduction of growth rate. The effect of temperature and growth time was investigated by scanning electron microscopy. Growth temperature and time affected nanorod's diameter and morphology. With increasing growth time, nanorod's diameter increased because of the deactivation effect. But growth temperatures affected little. By TEM characterization, grown SiC nanorods consisted of the polycrystalline grain.

Keywords

References

  1. A. C. Dillon, K. M. Jones, T. A. Bekkedahl, C. H. Kiang, D. S. Bethme, M. J. Haben, Nature. 386, 377 (1997) https://doi.org/10.1038/386377a0
  2. G. E. Gadd, M. Blackford, D. Moricca, N. Webb, P. J. Evans, A. M. Smith, G. Jacobson, S. Leung, A. day, Q. Hun, Science 277, 933 (1997) https://doi.org/10.1126/science.277.5328.933
  3. J. H. Boo, K. S. Yu, Y. Kim, S. H. Yeon. J. N. Jung, Chem. Mater, 7, 694 (1995) https://doi.org/10.1021/cm00052a014
  4. H. J. Dai, E. W. Wang, Y.,Z. Lu, S. S. Fang, C. M. Lieber, Nature, 375, 769 (1995) https://doi.org/10.1038/375769a0
  5. G. W. Meng, L. D. Zhang, C. M. Mo, F. Phillipp, Y. Qin, H. J. Li, S. P. Feng, S. Y. Zhang, Mater. Res. Bull., 34(5), 783 (1999) https://doi.org/10.1016/S0025-5408(99)00073-2
  6. C. C. Tang, S. S. Fan, H. Y. Dang, J. H. Zhao, C. Zhang, P. Li, Q. Gu, J. Crystal Growth, 223, 125 (2001) https://doi.org/10.1016/S0022-0248(00)00850-2
  7. Yabao Li, Sishen Xie, Bingging Wei, Guoda Lian, Weiya Zhou, Dongsheng Tang, Xiaoping Zou, Gang Weng, Solid State Communications, 119, 51 (2001) https://doi.org/10.1016/S0038-1098(01)00196-X
  8. Y. B. Li, S. S. Kie, X. P. Zou, D. S. Tang, Z. Q. Liu, W. Y. Zhou, G. Wang, J. Crystal growth, 223, 125 (2001) https://doi.org/10.1016/S0022-0248(01)00597-8
  9. Yinggiu Zhang, Nan Lin wang, Rong rui He, Xihua Chen, Jing Zhu, Solid State Communications, 118, 595 (2001) https://doi.org/10.1016/S0038-1098(01)00181-8
  10. G. W. Meng, L. D. Zhang, C. M. Mo, S. Y. Zhang, H. J. Li, Y. Qin, S. P. Feng, Metal. & Mat. Trans., A 30A, 213 (1999)
  11. X. C. Wu. W. H. Song, W. D. Huang, M. H. Pu, B. Zhou, Y. P. sun, J. J. Da, Mater. Res. Bull., 36, 847 (2001) https://doi.org/10.1016/S0025-5408(01)00571-2
  12. Ishizaka. A, Shiraki. Y, J. Electrochem. Soc. 133, 666 (1986) https://doi.org/10.1149/1.2108651
  13. Z. W. Pan, S. S. Xie, L. F. Sun, G. Wang, Chem Phys. Lett. 299, 97 (1999) https://doi.org/10.1016/S0009-2614(98)01240-8
  14. C. J. Lee, J. H. Park, J. Park, Chem. Phys. Lett., 323, 560 (2000) https://doi.org/10.1016/S0009-2614(00)00548-0
  15. J. Lahaye, D. Badie, J. Ducret, Carbon, 15, 87 (1977) https://doi.org/10.1016/0008-6223(77)90022-7