DOI QR코드

DOI QR Code

Changes in Lipid Peroxidation Level and Antioxidant Enzyme Activities of Rats Supplemented with Dietary Cholesterol and/or Taurine

콜레스테롤 및 타우린 첨가식이가 흰쥐 혈장과 간의 지질과산화물 농도와 항산화효소 활성에 미치는 영향

  • 정은정 (강남대학교 교양학부) ;
  • 엄영숙 (연세대학교 식품영양과학연구소) ;
  • 남혜원 (수원여자대학 식품과학부) ;
  • 박태선 (연세대학교 식품영양학과)
  • Published : 2003.12.01

Abstract

Effects of dietary cholesterol and/or taurine supplementation on plasma and hepatic lipid peroxidation status and antioxidant enzyme activities were evaluated in rats fed one of the following semisynthetic diets for 5 weeks: control diet (CD, cholesterol-free and taurine-free diet); high cholesterol diet (HCD, CD+1.5% cholesterol): high taurine diet (HTD, CD+1.5% taurine): high cholesterol and high taurine diet (HCHTD, HCD + 1.5% taurine). Plasma malondialdehyde (MDA) level was not influenced by dietary cholesterol or taurine supplementation, while hepatic MDA level was 70% higher in rats fed HCD compared to the value for CD rats (p<0.05). Our observation that taurine supplementation significantly decreased the hepatic MDA level of rats fed HCD, but failed to decrease lipid peroxidation of rats fed CD indicates that the protective effect of taurine in the liver against lipid peroxidation is manifested only under the hypercholesterolemic environment. Plasma and hepatic glutathione peroxidase (GSH-Px) activities were not affected by dietary supplementation of cholesterol or taurine. However, hepatic superoxide dismutase (SOD) activity was significantly reduced by dietary taurine supplementation (p <0.05), and thus significantly lower in rats fed HTD compared to the value for CD (p<0.05). Plasma total cholesterol concentration was positively correlated with hepatic cholesterol concentration as expected (r=0.712, p<0.001). Plasma (r=0.399, p<0.05) and hepatic cholesterol levels (r=0.429, p<0.05) showed a significantly positive correlation with hepatic MDA concentration, respectively. Plasma taurine concentration was negatively correlated with hepatic SOD activity (r=-0.481, p<0.01), and tended to be negatively correlated with hepatic GSH-Px activity without showing statistical significance (r=-0.188, p<0.05). These results indicate an antioxidative effect of taurine in rats with elevated level of lipid Peroxidation due to high intake of dietary cholesterol. Future application of taurine as a safe candidate for a hypolipidemic agent without adversely affecting body's antioxidant defense system is speculated.

본 논문은 타우린 및 콜레스테롤이 체내 항산화체계 및 지질과산화물농도에 미치는 영향을 평가하기 위해 흰쥐를 대상으로 콜레스테롤(1.5%) 및 타우린(1.5%)이 첨가된 식이로 5주간 사육하였으며, 그 결과를 요약하면 다음과 같다. 첫 번째로 혈장의 MDA 농도는 콜레스테롤 또는 타우린 첨가에 의해 유의한 영향을 받지 않은 반면, 간조직의 MDA 농도는 HCD군에서 CD군에 비해 70% 유의하게 증가하였다(p<0.05). 고콜레스테롤식이에 타우린을 첨가해 준 결과 간조직의 지질과산화물 농도가 HCD군에 비해 유의하게 감소한 반면(p<0.05),콜레스테롤을 섭취하지 않는 상태에서 타우린을 첨가한 HTD군의 경우에는 간조직 MDA 농도가 대조군(CD)과 유의적인 차이를 나타내지 않아 식이내 타우린 첨가가 간의 지질과산화물 농도에 미치는 영향은 콜레스테롤 섭취수준에 의해 그 결과가 상이하게 나타남을 알 수 있었다. 두 번째, 혈장 및 간조직 의 GSH-Px 활성 은 식이내 콜레스테롤 및 타우린 첨가에 의해 유의한 영향을 받지 않았다. 간조직의 총SOD활성은 타우린 첨가에 의해 감소되었으며 (p<0.05), HTD군에서 CD군에 비해 유의하게 감소하였고 (p<0.05), HCHTD군의 경우에는 HCD군에 비해 감소하는 경향을 보였으나, 통계적 유의성은 나타나지 않았다. 세 번째, 혈장 및 간조직의 지질과산화물농도, 항산화효소 활성, 콜레스테롤 및 타우린농도와의 상관관계를 평가한 결과, 혈장 총콜레스테롤농도는 간조직의 콜레스테롤농도와 매우 유의한 양의 상관관계를 보였다(r=0.712 p<0.001). 혈장(r=0.399, p < 0.05) 또는 간조직의 콜레스테롤농도(r=0.429, p <0.05)는 간조직의 MDA농도와 유의한 양의 상관관계를 나타냈다. 혈장 타우린농도는 간조직의 GSH-Px 활성과는 유의하지는 않지만 음의 상관관계(r=-0.188, p > 0.05)를, 그리고 간조직의 SOD활성과는 유의적인 음의 상관관계(r=-0.481,p < 0.01)를 나타냈다. 한편, 간조직의 총 SOD 활성은 간조직의 GSH-Px 활성과 유의한 양의 상관관계 (r=0.554, p<0.001)를 나타내, 두가지 항산화효소의 활성이 서로 밀접하게 연관되어 있음을 알 수 있었다. 콜레스테롤이 산화촉진제로 작용하여 조직의 지질과산화가 촉진된 상황에서 타우린의 보충섭취가 간조직의 SOD 활성을 감소시키고 MDA 수준을 유의하게 감소시킨 본 연구의 결과로 미루어 볼 때, 산화적 손상을 초래하지 않는 안전한 혈중 지질저하제로서 타우린의 이용 가능성이 전망된다.

Keywords

References

  1. Messina SA, Dawson R Jr. 2000. Attenuation of oxidative damage to DNA by taurine and taurine analogs. Adv Exp Med Biol 483: 355-367.
  2. Schuller-Levis G, Gordon RE, Wright C, Park E. 2003. Taurine reduces lung inflammation and fibrosis caused by bleomycin. Adv Exp Med Biol 526: 395-402. https://doi.org/10.1007/978-1-4615-0077-3_48
  3. Giri SN, Wang Q. 1992. Taurine and niacin offer a novel therapeutic modality in prevention of chemically-induced pulmonary fibrosis in hamsters. In Taurine. Lombardini JB, ed. Plenum Press, New York. p 329-340.
  4. Gurujeyalakshmi G, Wang Y, Giri SN. 2000. Taurine and niacin block lung injury and fibrosis by down-regulating bleomycin-induced activation of transcription nuclear factorĸ in mice. J Pharmacol Exp Ther 293: 82-90.
  5. Lim E, Park S, Kim H. 1998. Effect of taurine supplementation on the lipid peroxide formation and the activities of glutathione-related enzymes in the liver and islet of type I and II diabetic model mice. Adv Exp Med Biol 442: 99-103.
  6. You JS, Chang KJ. 1998. Effects of taurine supplementation on lipid peroxidation, blood glucose and blood lipid metabolism in streptozotocin-induced diabetic rats. Adv Exp Med Biol 442: 163-168. https://doi.org/10.1007/978-1-4899-0117-0_21
  7. Trachtman H, Futterweit S, Maesaka J, Ma C, Valderrama E, Fuchs A, Tarectecan AA, Rao PS, Sturman JA, Boles TH. 1995. Taurine ameliorates chronic streptozotocin-induced diabetic nephropathy in rats. Am J Physiol 269 (3 Pt 2): F429-438.
  8. Tenner TE Jr, Zhang XJ, Lombardini JB. 2003. Hypoglycemic effects of taurine in the alloxan-treated rabbit: a model for type 1 diabetes. Adv Exp Med Biol 526: 97-104. https://doi.org/10.1007/978-1-4615-0077-3_13
  9. Park TS, Lee KS. 1997. Effects of dietary taurine supplementation on plasma and liver lipid levels in rats fed a cholesterol-free diet. Korean J Nutr 30: 1132-1139.
  10. Park T, Lee KS, Um YS. 1998. Dietary taurine supplementation reduces plasma and liver cholesterol and triglyceride concentrations in rats fed a high-cholesterol diet. Nutr Res 18: 1559-1571. https://doi.org/10.1016/S0271-5317(98)00130-4
  11. Byun JH. 1995. The goals and strategy for health promotion. Korean Institute for Health and Social Affairs.
  12. Joseph JA, Villalobos-Molinas R, Denisova NA, Erat S, Strain J. 1997. Cholesterol: a two-edged sword in brain aging. Free Radic Biol Med 22: 455-462. https://doi.org/10.1016/S0891-5849(96)00376-0
  13. Tsai AC, Thie GM, Lin CR. 1997. Effect of cholesterol feeding on tissue lipid peroxidation, glutathione peroxidase activity and liver microsomal functions in rats and guinea pigs. J Nutr 107: 310-319.
  14. Uysal M, Kutalp G, Seckin S. 1988. The effect of cholesterol feeding on lipid peroxide, glutathione, glutathione peroxidase and glutathione transferase in the liver of rats. Int J Vitam Nutr Res 58: 339-342.
  15. Rivero A, Monreal JI, Gil MJ. 1994. Peroxisome enzyme modification and oxidative stress in rats by hypolipidemic and antiinflammatory drugs. Rev Esp Fisiol 50: 259-268.
  16. Ciriolo MR, Rossi L, Mavelli I, Rotilio G, Borzatta V, Cristofori M, Barbanti M. 1984. The effects of hypolipidemic agents derived from procetofenic acid on the activity of superoxide dismutase and glutathione peroxidase and on malonyldialdehyde production of rat liver. Arzneimittelforschung 34: 465-457.29.
  17. Chung EJ, Um YS, Oh JY, Park TS. 2000. Effects of oral taurine supplementation on antioxidant systems in healthy female adults. Korean J Nutr 33: 745-754.
  18. Buckingham KW. 1985. Effect of dietary polyunsaturated/ saturated fatty acid ratio and dietary vitamin E on lipid peroxidation in the rat. J Nutr 115: 1425-1435.
  19. Marklund S, Marklund G. 1974. Involvement of the superoxide anion radical in the autoxidation of pyrogallol and a convenient assay for superoxide dismutase. Eur J Biochem 47: 469-474. https://doi.org/10.1111/j.1432-1033.1974.tb03714.x
  20. Sheri ZC, Keen CL, Hurley LS. 1983. Superoxide dismutase activity and lipid peroxidation in the rat: developmental correlations affected by manganese deficiency. J Nutr 113: 2498-2504.
  21. Paglia DE, Valentine WN. 1967. Studies on the quantitative and qualitative characterization of erythrocyte glutathione peroxidase. J Lab & Clin Med 70: 158-169.
  22. Deagen JT, Butler JA, Beilstein MA, Wharyer PD. 1987. Effects of dietary selenite, selenocysteine and selenomethionine on selenocysteine lyase and glutathione peroxidase activities and on selenium levels in rat tissues. J Nutr 117: 91-98.
  23. Lowry OH, Rosebrough NJ, Farr AL, Randall RS. 1951. Protein measurement with the Folin-phenol reagent. J Biol Chem 93: 265-275.
  24. Moore S, Stein WH. 1963. Chromatographic determination of amino acids by the use of automatic recording equipment. In Methods in Enzymology. Colowick SP, Kaplan NO, eds. Academic Press, New York. Vol 6, p 819-831.
  25. Folch J, Lees M, Sloone-Stanley GH. 1957. A simple method for the isolation and purification of total lipids from animal tissue. J Biol Chem 2: 497-509.
  26. Zak B. 1957. Simple rapid microtechnique for serum total cholesterol. Am J Clin Pathol 27: 683-688.
  27. Allian CC, Poon LS, Chan CSG, Richmond W, Fu PC. 1974. Enzymatic determination of total serum cholesterol. Clin Chem 20: 470-465.
  28. Muldoon MF, Kritchevsky SB, Evans RW, Kagan VE. 1996. Serum total antioxidant activity in relative hypo- and hypercholesterolemia. Free Radic Res 25: 239-245. https://doi.org/10.3109/10715769609149049
  29. Bereza UL, Brewer GJ, Hill GM. 1985. Effect of dietary cholesterol on erythrocyte peroxidant stress in vitro and in vivo. Biochim Biophy Acta 835: 434-440. https://doi.org/10.1016/0005-2760(85)90112-2
  30. Yuan YV, Kitts DD, Godin DV. 1998. Variations in dietary fat and cholesterol intakes modify antioxidant status of SHR and WKY rats. J Nutr 128: 1620-1630.
  31. Lee SK, Chung EJ, Kim SY, Lee JH, Lee YC. 1996. Relationships between dietary${\omega}6$/${\omega}3$ fatty acid compositions, vitamin E, minerals and antioxidant enzymes. Korean J Lipidol 6: 1-11.
  32. Kim CK, Park EK, Quinn MR, Schuller-Levis G. 1996. The production of superoxide anion and nitric oxide by cultured murine leukocytes and the accumulation of TNF-$\alpha$ in the conditioned media is inhibited by taurine chloramine. Immunopharmacol 34: 89-95. https://doi.org/10.1016/0162-3109(96)00113-0
  33. Murakami M, Asagoe K, Dekigai H, Kusaka S, Saita H, Kita T. 1995. Products of neutrophil metabolism increase ammonia-induced gastric mucosal damage. Dig Dis Sci 40: 268-273. https://doi.org/10.1007/BF02065408
  34. Son MW, Kim HK, Kim WB, Yang JI, Kim BK. 1996. Protective effect of taurine on indomethacin-induced gastric mucosal injury. Arch Pharmacal Res 19: 85-90. https://doi.org/10.1007/BF02976839
  35. Aruoma OI, Halliwell B, Hoey BM, Butler J. 1988. The antioxidant action of taurine, hypotaurine and their metabolic precursors. Biochem J 256: 251-255.
  36. Green TR, Fellman JH, Eicher AL, Pratt KL. 1991. Antioxidant role and subcellular location of hypotaurine and taurine in human neutrophils. Biochim Biophys Acta 1073: 91-97. https://doi.org/10.1016/0304-4165(91)90187-L
  37. Pasantes-Morales H, Cruz C. 1984. Protective effect of taurine and zinc on peroxidation-induced damage in photoreceptor outer segments. J Neuros Res 11: 303-311. https://doi.org/10.1002/jnr.490110310
  38. Pasantes-Morales H, Cruz C. 1985. Taurine and hypotaurine inhibit light-induced lipid peroxidation and protect rod outer segment structure. Brain Res 330: 154-157. https://doi.org/10.1016/0006-8993(85)90018-6
  39. Alvarez JG, Storey BT. 1983. Taurine and hypotaurine inhibit light-induced lipid peroxidation in rabbit spermatozoa and protect against loss of motility. Biol Reprod 29: 548-555. https://doi.org/10.1095/biolreprod29.3.548
  40. Lippman RD. 1989. Free radical-induced lipoperoxidation and aging. In Handbook of Free Radicals and Antioxidants in Biomedicine. CRC Press, New York. p 187-197.

Cited by

  1. Studies on the major nutritional components of commercial dried lavers (Porphyra yezoensis) cultivated in Korea vol.21, pp.5, 2014, https://doi.org/10.11002/kjfp.2014.21.5.702
  2. Antioxidative and Anti-Diabetes Activity, and Free Amino Acid and Mineral Contents of Beverage with Gugija (Lycii fructus) Extracts vol.31, pp.2, 2015, https://doi.org/10.9724/kfcs.2015.31.2.207
  3. 고콜레스테롤 식이 섭취 흰쥐에 대한 적송잎 추출물의 항산화 효과 vol.38, pp.4, 2003, https://doi.org/10.3746/jkfn.2009.38.4.423
  4. 대두와 된장분말이 고콜레스테롤식이를 급여한 흰쥐의 콜레스테롤 농도 및 항산화 활성에 미치는 영향 vol.20, pp.7, 2010, https://doi.org/10.5352/jls.2010.20.7.1134