Physicochemical Properties of Organo­Smectites Modified by HDTMA, BDTDA, and CP

HDTMA­, BDTDA­ 및 CP­스멕타이트의 물리­화학적 특성

  • 고상모 (한국지질자원연구원 지질기반정보연구부 광물자원연구실) ;
  • 홍석정 (한국지질자원연구원 지질기반정보연구부 광물자원연구실) ;
  • 송민섭 (한국지질자원연구원 지질기반정보연구부 광물자원연구실)
  • Published : 2003.12.01

Abstract

This study aims to provide the physicochemical properties of three kinds of organo­smectites which can be diversely used in industries. Some properties of them were compared with Na­smectite. Three kinds of organo­smectites such as Hexadecyltrimethylammonium(HDTMA), Benzyldimethyltetradecylammonium(BDTDA), and Cetylpyridinium(CP) exchanged smectites were manufactured for this study. Three types of organo­smectites showed the alkaline character(pH 9), very low swelling property and viscosity, and a fast flocculation behavior because of strong hydrophobic property in contrast to hydrophilic Na­smectite. Three organo­smectites showed the strong interlayer expansion with basal spacing from $19\AA$ to $23\AA$ compared with the Na­smectite of about 12 $\AA$. Organic cations such as HDTMA, BDTDA, and CP exchanged into smectite were completely decomposed in the temperature range from $250^{\circ}C$ to $400^{\circ}C$. Generally, three organo­smectites showed the similar mineralogical, physicochemical and thermal properties. But their properties are quite different from Na­smectite. Considering economically, CP exchanged smectite would be used for the diverse utilization field in the future time.

이 연구는 산업체에서 다양하게 활용될 수 있는 세 종류의 유기­스멕타이트를 제조하여 Na­스멕타이트와의 제반 물성을 비교함으로서 유기­스멕타이트의 활용을 위한 과학적인 자료를 제공하고자 한다. 이 연구를 위하여 제4가 암모늄 양이온에 속하는 Hexadecyl­trimethylammonium(HDTMA), Benzyldimethyltetradecylammonium(BDTDA) 및 Cetylpyridinium(CP) 염화물을 Na­스멕타이트에 치환시켜 세 종류의 유기­스멕타이트를 제조하였다. 유기­스멕타이트인 HDTMA­, BDTDA­ 및 CP­스멕타이트는 pH 9 정도로 비교적 높은 알칼리성을 나타내었다. 이들 유기­스멕타이트는 Na­스멕타이트에 비해 극히 낮은 팽윤도, 점도를 나타내고, 짧은 시간에 강한 응집이 초래되었다. 양이온 교환능과 동일한 양의 유기 양이온을 스멕타이트에 치환시켜 제조된 유기­스멕타이트의 저면간격은 HDTMA­스멕타이트가 $23.1\AA$, BDTDA­스멕타이트가 $19.2\AA$ 및 CP­스멕타이트가 $23.2\AA$로서, Na­스멕타이트의 $12.7\AA$에 비해 강한 격자 팽창이 초래 되었다. 유기­스멕타이트에 치환된 세 종류의 유기물은 $250^{\circ}C$에서 분해하기 시작하여 40$0^{\circ}C$ 부근의 온도에서 분해가 거의 종료되었다. 이는 연구된 세 종류의 유기­스멕타이트가 $250^{\circ}C$ 미만에서 안정함을 의미한다. 연구된 세 종류의 유기­스멕타이트는 대체로 유사한 광물학적, 물리­화학적 및 열적특성을 나타낸다. 이는 세 유기물의 화학적 성질의 유사성 때문일 것이다. 경제적인 면을 고려한다면 CP로 치환시킨 CP­스멕타이트의 활용이 매우 클 것으로 예측되며, 이에 대한 다양한 연구가 요구된다.

Keywords

References

  1. 고상모, 김자영(2002) Ca-형 및 Na-형 벤토나이트의 제반 물성 및 유기양이온 흡착비교. 한국광물학회지, 15, 243-257.
  2. 고상모, 제은주 (2001) 유기점토의 개요와 활용. 광물과 산업, 14, 48-61.
  3. 노진환 (2000) 벤토나이트의 광물학적 특성과 품위 및 품질 평가. 제 1회 산업광물 심포지움 논문요약집, ‘벤토나이트와 그 응용’중에서, 16-29.
  4. 이상현, 박성완, 서전형 (2000a) 국내 벤토나이트의 각 산업에서의 활용 및 그 현황. 제 1회 산업광물 심포지움 논문요약집, ‘벤토나이트 및 그 응용’ 중에서, 40-50.
  5. 이상현, 박성완, 서전형 (2000b) 벤토나이트의 산업적응용. 제13회 한국광물학회 추계학술답사 및 벤토나이트 주제 학술발표 논문집, 13-22.
  6. Anderson, M.A., Trouw, F.R., and Tam CN. (1999)Properties of water in calcium- and hexadecyltrimethylammonium-exchanged bentonite. Clays Clay Miner., 47, 28-35.
  7. Bors, J., Dultz, S., and Riebe, B. (2000) Organophilic bentonites as adsorbents for radionuclides (I. Adsorption of ionic fission products). Appl. Clay Sci.,16,1-13.
  8. Boyd, SA, Lee J., and Mortland, M.M. (1988a)Attenuating organic contaminant mobility by soil modification. Nature, 333, 345-347.
  9. Boyd, SA, Mortland, M.M., and Chiou CT. (1988b)Sorption characteristics of organic compounds on Hexadecyltrimethylammonium-smectite. Soil Sci. Soc. Am. J., 52, 652-657.
  10. Boyd, S.A., Shaobai, S., Lee, J., and Mortland, M.M.(1988c) Pentachlorophenol sorption by organoclays.Clays Clay Miner., 36, 125-130.
  11. Brixie J.M. and Boyd, SA (1994) Treatment of contaminated soils with organoclays to reduce leachable pentachlorophenol (Organic chemicals in the environment). J. Environ. Qual., 23, 1283-1290.
  12. Dultz, S. and Bors, J. (2000) Organophilic bentonites as adsorbents for radionuclides (II. Chemical and mineralogical properties of HDPy-montmorillonite.)Appl. Clay Sci., 16, 15-29.
  13. Jaynes, W.F. and Boyd, SA (1991) Clay mineral type and organic compound sorption by hexadecyltrimethylammonium-exchanged clays. Soil Sci. Soc. Am. J., 55, 43-48.
  14. Jaynes, W.F. and Vance, G.F. (1996) BTEX sorption by organo-clays: cosorptive enhancement and equivalence of interlayer complexes. Soil Sci. Soc. Am.J., 60, 1742-1749.
  15. Johnston, C.T. (1996) Sorption of organic compounds on clay minerals: A surface functional group approach. In: Sawhney, B.L. (ed.), Organic pollutants in the environment, CMS workshop lectures, 8, The Clay Minerals Society, Boulder, CO, USA, 2-44.
  16. Ijdo, W. L. and Pinnavaia, T. J. (1998) Staging of organic and inorganic gallery cations in layered silicate heterostructure. J. Solid State Chern., 139,281-289.
  17. Koh, S.M. and Dixon, J.B. (2001) Preparation and application of organo-minerals as sorbents of phenol, benzene and toluene. Appl. Clay Sci., 18, 111-122.
  18. Lagaly, G. and Weiss, A. (1969) Determination of the clay charge in mica-type layer silicates. In: Proc. Int. Clay Conf. Tokyo, 1, 61-80.
  19. Lawrence, M.A.M., Kukkadapu, R.K., and Boyd, S.A.(1998) Adsorption of phenol and chlorinated phenols form aqueous solution by tetradecylammonium- and tertramethylphosphonium exchanged montmorillonite. Appl. Clay Sci., 13, 13-20.
  20. Lee, S.Y. and Kim, S.J. (2002) Expansion of smectite by hexadecyltrimethylammonium. Clays Clay Miner.,50, 435-445.
  21. Lee, S.Y. and Kim, S.J. (2003) Dehydration behaviors of hexadecyltrimethylammonium exchanged smectite. Clay Minerals, 38, 225-232.
  22. Lee J., Mortland, M.M., Chiou, C.T., Kile, D.E., and Boyd, SA (1990) Adsorption of benzene, toluene,and xylene by two tetramethylammonium-smectites having different charge densities. Clays Clay Miner.,38, 113-120.
  23. Montgomery, D.M., Sollars, C.J. Sheriff, T.S., and Perry, R. (1988) Organophilic clays for the successful stabilization/solidification of problematic industrial wastes. Environ. Technol. Lett., 9, 1403-1412.
  24. Mortland, M. M. (1970) Clay-organic complexes and interactions. In: Advances in agronomy, 12. 75-117.
  25. Mortland, M.M., Shaobai, S., and Boyd, SA (1986) Clay-organic complexes as adsorbents for phenol and chlorophenols. Clays Clay Miner., 34, 581-585.
  26. Sheriff, T.S., Sollars, C.J., Montgomery, D., and Perry, R. (1987) Modified clays for organic waste disposal.Environ. Technol. Lett., 8, 501-514.
  27. Smith, J.A and Jaffe, P.R. (1994) Adsorptive selectivity of organic cation modified bentonite for nonionic organic contaminants. Water, Air, and Soil Pollution, 72, 205-211.
  28. Teppen, B.J., Yu, C. Miller, D., and Schafer, L. (1998)Molecular dynamics simulations of sorption of organic compounds at the clay mineral/aqueous solution interface. J. Comput. Chern., 19, 144-153.
  29. Warren, C.F. and Gehr, R. (1987) Desorption of cationic polyacrylamide from bleached kraft pulp fibers. Wat. Sci. Tech., 19, 939-951.
  30. Weiss, C. A. Larson, S. L., and Adams, J. W. (1998)Molecular modeling and experimental investigation of the sorption of triaminotoluene on clay soils. In: meeting program and abstracts (CMS 35th annnual meeting), 37.
  31. Zhang, Z.Z. and Sparks, D.L. (1993) Kinetics of phenol and aniline adsorption and desorption on an organo-clay. Soil Sci. Soc. Am. J., 57, 340-345.