Role of Dipeptide at Extra Sugar-Binding Space of Thermus Maltogenic Amylase in Transglycosylation Activity

  • Baek, Jin-Sook (National Laboratory for Functional Food Carbohydrate and Center for Agricultural Bio-Materials, Seoul National University) ;
  • Kim, Tae-Jip (Department of Food Science & Technology, Chungbuk National University) ;
  • Kim, Young-Wan (National Laboratory for Functional Food Carbohydrate and Center for Agricultural Bio-Materials, Seoul National University) ;
  • Cha, Hyun-Ju (National Laboratory for Functional Food Carbohydrate and Center for Agricultural Bio-Materials, Seoul National University) ;
  • Kim, Jung-Wan (Department of Biology, University of Incheon) ;
  • Kim, Yong-Ro (National Laboratory for Functional Food Carbohydrate and Center for Agricultural Bio-Materials, Seoul National University) ;
  • Lee, Sung-Joon (Stanford School of Medicine, Palo Alto Medical Research Foundation) ;
  • Moon, Tae-Wha (National Laboratory for Functional Food Carbohydrate and Center for Agricultural Bio-Materials, Seoul National University) ;
  • Park, Kwan-Hwa (National Laboratory for Functional Food Carbohydrate and Center for Agricultural Bio-Materials, Seoul National University)
  • Published : 2003.12.01

Abstract

Two conserved amino acid residues in the extra sugar-binding space near the catalytic site of Thermus maltogenic amylase (ThMA) were analyzed for their role in the hydrolysis and transglycosylation activity of the enzyme. Site-directed mutagenesis was carried out by replacing N33l with a lysine (N331K), E332 with a histidine (E332H), or by replacing both residues at the same time (N331K/E332H). The measured $K_m$ values indicated that affinities toward all substrates tested, including starch, pullulan, ${\beta}-cyclomaltodextrin$, and acarbose, were lower in all the mutants compared to that of wild-type ThMA, leading to reduced hydrolysis activity. In addition, the lower ratio of transglycosylation to hydrolysis in the mutants compared to that in the wild-type ThMA indicated that these mutants preferred hydrolysis to the transglycosylation reaction. These results demonstrated that the conserved dipeptide at 331 and 332 of ThMA is directly involved in the formation and accumulation of transfer products by accommodating acceptor sugar molecules.

Keywords

References

  1. FEBS Lett. v.527 Maltooligosaccharide disproportionation reaction: An intrinsic property of amylosucrase from Neisseria polysaccharea Albenne,C.;L.K.Skov;O.Mirza;M.Gajhede;G.Potocki-Veronese;P.Monsan;M.Remaud-Simeon https://doi.org/10.1016/S0014-5793(02)03168-X
  2. Eur. J. Biochem. v.253 Molecular and enzymatic characterization of maltogenic amylase that hydrolyzes and transglycosylates acarbose Cha,H.J.;H.G.Yoon;H.S.Lee;J.W.Kim;K.S.Kweon;B.H.Oh;K.H.Park https://doi.org/10.1046/j.1432-1327.1998.2530251.x
  3. Anal. Biochem. v.195 Miniaturization of three carbohydrate analysis using a microsample plate reader Fox,J.D.;J.F.Robyt https://doi.org/10.1016/0003-2697(91)90300-I
  4. J. Biol. Chem. v.274 Crystal structure of a maltogenic amylase provides insights into a catalytic versatility Kim,J.S.;S.S.Cha;H.J.Kim;T.J.Kim;N.C.Ha;S.T.Oh;H.S.Cho;M.J.Chol;M.J.Kim;H.S.Lee;J.W.Kim;K.Y.Choi;K.H.Park;B.H.Oh https://doi.org/10.1074/jbc.274.37.26279
  5. J. Microbiol. Biotechnol. v.12 Two-step fed-batch culture of recombinant Escherichia coli for production of Bacillus licheniformis maltogenic amylase Kim,M.D.;W.J.Lee;K.H.Park;K.H.Rhee;J.H.Seo
  6. Appl. Environ. Microbiol. v.65 Modes of action of acarbose hydrolysis and transglycosylation catalyzed by a thermostable maltogenic amylase, the gene for which was cloned from Thermus strain Kim,T.J.;M.J.Kim;B.C.Kim;J.C.Kim;T.K.CHeong;J.W.Kim;K.H.Park
  7. Biochemistry v.39 Role of glutamate 332 in the transglycosylation activity of Thermus maltogenic amylase Kim,T.J.;C.S.Park;H.Y.Cho;S.S.Cha;J.S.Kim;S.B.Lee;T.W.Moon;J.W.Kim;B.H.Oh;K.H.Park https://doi.org/10.1021/bi992575i
  8. J. Agric. Food Chem. v.50 Cooperative action of alpha-glucanotransferase and maltogenic amylase for an improved process of isomaltooligosaccharide (IMO) production Lee,H.S.;J.H.Auh;H.G.Yoon;M.J.Kim;J.H.Kim;S.S.Hong;M.H.Kang;T.J.Kim;T.W.Moon;J.W.Kim;K.H.Park https://doi.org/10.1021/jf011529y
  9. Anal. Chem. v.31 Use of dinitrosalicylic acid reagent for determinatio of reducing sugar Miller,G.L. https://doi.org/10.1021/ac60147a030
  10. Carbohydr. Res. v.313 Transglycosylation reactions of Bacillus stearohermophlius maltogenic amylase with acarbose and various acceptors Park,K.H.;M.J.Kim;H.S.Lee;N.S.Han;D.Kim;J.F.Robyt https://doi.org/10.1016/S0008-6215(98)00276-6
  11. Biochem. Biophys. Acta v.1478 Structure, specificity and function of cyclomaltodextrinase, a multispecific enzyme of the α-amylase family Park,K.H.;T.J.Kim;T.K.Cheong;J.W.Kim;B.H.Oh;B.Svensson
  12. Agric. Biol. Chem. v.46 Enzymatic properties and action pattern of Thermoactinomyces vulgaris α-amylase Sakano,Y.;S.Hiraiwa;J.Fukushima;T.Kobayashi https://doi.org/10.1271/bbb1961.46.1121
  13. Biosci. Biotechnol. Biochem. v.67 Transglycosylation of glycosyl residues of cyclic tetrasaccharide by Bacillus stearothermophilus cyclomaltodextrin glucanotransferase using cyclomaltodextrin as the glycosyl donor Shibuya,T.;H.Aga;H.Watanabe;T.Sonoda;M.Kubota;S.Fukuda;M.Kurimoto;Y.Tsujisaka https://doi.org/10.1271/bbb.67.1094
  14. J. Biol. Chem. v.276 Amylosucrase, a glucan-synthesizing enzyme from and α-amylase family Skov,L.K.;O.Mirza;A.Henriksen;G. P. De Montalk;M.Remaud-Simeon;P.Sarcabal;R.M.Willemot;P.Monsan;M.Gajhede https://doi.org/10.1074/jbc.M010998200
  15. Gene v.34 Cassette mutagenesis: An efficient method for generation of multiple mutations at defined sites Wells,J.A.;M.Vasser;D.B.Powers https://doi.org/10.1016/0378-1119(85)90140-4
  16. J. Microbiol. Biotechnol. v.11 Co-prodution of dextran and mannitol by Leuconostoc mesenterodies Yoo,K.S.;D.M.Kim;D.F.Day
  17. J. Biosci. Bioeng. v.87 The concept of the α-amylase family: Structural similarity and common catalytic mechanism Kuriki,T.;T.Imanaka https://doi.org/10.1016/S1389-1723(99)80114-5