Effect of Ginsenoside Rd on Nitric Oxide System Induced by Lipopolysaccharide Plus $TNF-{\alpha}$ in C6 Rat Glioma Cells

  • Choi, Seong-Soo (Department of Pharmacology, College of Medicine and Institute of Natural Medicine, Hallym University) ;
  • Lee, Jin-Koo (Department of Pharmacology, College of Medicine and Institute of Natural Medicine, Hallym University) ;
  • Han, Eun-Jung (Department of Pharmacology, College of Medicine and Institute of Natural Medicine, Hallym University) ;
  • Han, Ki-Jung (Department of Pharmacology, College of Medicine and Institute of Natural Medicine, Hallym University) ;
  • Lee, Han-Kyu (Department of Pharmacology, College of Medicine and Institute of Natural Medicine, Hallym University) ;
  • Lee, Jong-Ho (Department of Pharmacology, College of Medicine and Institute of Natural Medicine, Hallym University) ;
  • Suh, Hong-Won (Department of Pharmacology, College of Medicine and Institute of Natural Medicine, Hallym University)
  • Published : 2003.05.01

Abstract

Effects of ginsenosides on nitric oxide (NO) production induced by lipopolysaccharide plus TNF-$\alpha$ (LNT) were examined in C6 rat glioma cells. Among several ginsenosides, ginsenoside Rd showed a complete inhibition against LNT-induced NO production. Ginsenoside Rd attenuated LNT-induced increased phosphorylation of ERK. Among several immediate early gene products, only Jun Band Fra-1 protein levels were increased by LNT, and ginsenoside Rd attenuated Jun Band Fra-1 protein levels induced by LNT. Furthermore, LNT increased AP-1 DNA binding activities, which were partially inhibited by ginsenoside Rd. Our results suggest that ginsenoside Rd exerts an inhibitory action against NO production via blocking phosphorylation of ERK, in turn, suppressing immediate early gene products such as Jun Band Fra-1 in C6 glioma cells.

Keywords

References

  1. Angel, P. and Karin, M., The role of Jun, Fos and the AP-1 complex in cell-proliferation and transformation. Biochim. Biophys. Acta, 1072, 129-157 (1991)
  2. Bhat, N. R., Zhang, P., Lee, J. C., and Hogan, E. L., Extracellular signal-regulated kinase and p38 subgroups of mitogenactivated protein kinases regulate inducible nitric oxide synthase and tumor necrosis factor-alpha gene expression in endotoxin-stimulated primary glial cultures. J. Neurosci., 18, 1633-1641 (1998)
  3. Bo, L., Dawson, T. M., Wesselingh, S., Mork, S., Choi, S., Kong, P. A., Hanley, D., and Trapp, B. D., Induction of nitric oxide synthase in demyelinating regions of multiple sclerosis brains. Ann. Neurol., 36, 778-786 (1994) https://doi.org/10.1002/ana.410360515
  4. Bredt, D. S. and Snyder, S. H., Isolation of nitric oxide synthase, a calmodulin requiring enzyme. Proc. Natl. Acad. Sci. U.S.A., 87, 682-685 (1990) https://doi.org/10.1073/pnas.87.2.682
  5. Busse, R. and Mulsch, A., Calcium-dependent nitric oxide synthesis in endothelial cytosol is mediated by calmodulin. FEBS Lett., 265, 133-136 (1990) https://doi.org/10.1016/0014-5793(90)80902-U
  6. Chan, E. D. and Riches, D. W., IFN-gamma + LPS induction of iNOS is modulated by ERK, JNK/SAPK, and p38 (mapk) in a mouse macrophage cell line. Am. J. Physiol. Cell Physiol., 280, C441-450 (2001) https://doi.org/10.1152/ajpcell.2001.280.3.C441
  7. Chomczynski, P. and Sacchi, N., Single-step method of RNA isolation by acidic guanidium thiocyanate-phenol-chloroform extraction. Anal. Biochem., 162, 156-159 (1987)
  8. Cross, A. H., Misko, T. P., Lin, R. F., Hickey, W. F., Trotter, J. L., and Tilton, R. G., Aminoguanidine, an inhibitor of inducible nitric oxide synthase, ameliorates experimental autoimmune encephalomyelitis in SJL mice. J. Clin. Invest., 93, 2684-2690 (1994) https://doi.org/10.1172/JCI117282
  9. Danielson, P. E., Forss-Peter, S., Brow, M. A., Calavetta, L., Douglass, J., Milner, R. J., and Sutchliffe, J.G., p1$B_1$5: a cDNA clone of the rat mRNA encoding cyclophilin. DNA, 7, 261-267 (1988) https://doi.org/10.1089/dna.1988.7.261
  10. Dignam, J. D., Lebovitz, R. M., and Roeder, R. G., Accurate transcription initiation by RNA polymerase II in a soluble extract from isolated mammalian nuclei. Nucleic Acids Res., 11, 1475-1489 (1983) https://doi.org/10.1093/nar/11.5.1475
  11. Feinstein, D. L., Galea, E., Roberts, S., Berquist, H., Wang, H., and Reis, D. J., Induction of nitric oxide synthase in rat C6 glioma cells. J. Neurochem., 62, 315-321 (1994) https://doi.org/10.1046/j.1471-4159.1994.62010315.x
  12. Friedl, R., Moeslinger, T., Kopp, B., and Spieckermann, P. G., Stimulation of nitric oxide synthesis by the aqueous extract of Panax ginseng root in RAW 264.7 cells. Br. J. Pharmacol., 134, 1663-1670 (2001) https://doi.org/10.1038/sj.bjp.0704425
  13. Galea, E., Feinstein, D. L., and Reis, D. J., Induction of calciumindependent nitric oxide synthase activity in primary rat glial cultures. Proc. Natl. Acad. Sci. U.S.A., 89, 10945-10949 (1992) https://doi.org/10.1073/pnas.89.22.10945
  14. Galea, E., Reis, D. J., and Feinstein, D. L., Cloning and expression of inducible nitric oxide synthase from rat astrocytes. J. Neurosci. Res., 37, 406-414 (1994) https://doi.org/10.1002/jnr.490370313
  15. Garthwaite, J., Glutamate, nitric oxide and cell-cell signalling in the nervous system. Trends Neurosci., 14, 60-67 (1991) https://doi.org/10.1016/0166-2236(91)90022-M
  16. Gillis, C. N., Panax ginseng pharmacology: a nitric oxide link? Biochem. Pharmacol., 54, 1-8 (1997) https://doi.org/10.1016/S0006-2952(97)00193-7
  17. Hooper, D. C., Bagasra, O., Marini, J. C., Zborek, A., Ohnishi, S. T., Kean, R., Champion, J. M., Sarker, A. B., Bobroski, L., Farber, J. L., Akaike, T., Maeda, H., and Koprowski, H., Prevention of experimental allergic encephalomyelitis by targeting nitric oxide and peroxynitrite: implications for the treatment of multiple sclerosis. Proc. Natl. Acad. Sci. U.S.A., 94, 2528-2533 (1997) https://doi.org/10.1073/pnas.94.6.2528
  18. Hu, S., Sheng, W. S., Peterson, P. K., and Chao, C. C., Differential regulation by cytokines of human astrocyte nitric oxide production. Glia, 15, 491-494 (1995) https://doi.org/10.1002/glia.440150412
  19. Jaffrey, S. R. and Snyder, S. H., Nitric oxide: a neural messenger. Ann. Rev. Cell. Dev. Biol., 11, 417-440 (1995) https://doi.org/10.1146/annurev.cb.11.110195.002221
  20. Kang, S. Y., Kim, S. H., Schini, V. B., and Kim, N. D., Dietary ginsenosides improve endothelium-dependent relaxation in the thoracic aorta of hypercholesterolemic rabbit. Gen. Pharmacol., 26, 483-487 (1995) https://doi.org/10.1016/0306-3623(95)94002-X
  21. Kim, Y. C., Kim, S. R., Markelonis, G. J., and Oh, T. H., Ginsenosides R$B_1$ and Rg3 protect cultured rat cortical cells from glutamate-induced neurodegeneration. J. Neurosci. Res., 53, 426-432 (1998) https://doi.org/10.1002/(SICI)1097-4547(19980815)53:4<426::AID-JNR4>3.0.CO;2-8
  22. Koprowski, H., Zheng, Y. M., Heber-Katz, E., Fraser, N., Rorke, L., Fu, Z. F., Hanlon, C., and Dietzschold, B., In vivo expression of inducible nitric oxide synthase in experimentally induced neurologic diseases. Proc. Natl. Acad. Sci. U.S.A., 90, 3024-3027 (1993). [Published erratum appears in Proc. Natl. Acad. Sci. U.S.A. 90, 5378.] https://doi.org/10.1073/pnas.90.7.3024
  23. Laemmli, U., Cleavage of structure proteins during the assembly of the head of bacteriophage T4. Nature, 227, 680-685 (1970) https://doi.org/10.1038/227680a0
  24. Lee, J. K., Choi, S. S., Won, J. S., and Suh, H. W., The Regulation of inducible nitric oxide synthase gene expression induced by lipopolysaccharide plus tumor necrosis factor-a in C6 cells; the involvements of AP-1 and NFkB. Life Sci., in press (2003)
  25. Marletta, M. A., Nitric oxide synthase: function and mechanism. Adv. Exp. Med. Biol., 338, 281-284 (1993) https://doi.org/10.1007/978-1-4615-2960-6_58
  26. Merrill, J. E., Ignarro, L. J., Sherman, M. P., Melinek, J., and Lane, T. E., Microglial cell cytotoxicity of oligodendrocytes is mediated through nitric oxide. J. Immunol., 151, 2132-2141 (1993)
  27. Mitrovic, B., Ignarro, L. J., Montestruque, S., Smoll, A., and Merrill, J. E., Nitric oxide as a potential pathological mechanism in demyelination: its differential effects on primary glial cells in vitro. Neuroscience, 61, 575-585 (1994) https://doi.org/10.1016/0306-4522(94)90435-9
  28. Nathan, C., Nitric oxide as a secretory product of mammalian cells. FASEB J., 6, 3051-3064 (1992) https://doi.org/10.1096/fasebj.6.12.1381691
  29. Pahan, K., Namboodiri, A. M., Sheikh, F. G., Smith, B. T., and Singh, I., Increasing cAMP attenuates induction of inducible nitric-oxide synthase in rat primary astrocytes. J. Biol. Chem., 272, 7786-7791 (1997b) https://doi.org/10.1074/jbc.272.12.7786
  30. Pahan, K., Sheikh, F. G., Khan, M., Namboodiri, A. M., and Singh, I., Sphingomyelinase and ceramide stimulate the expression of inducible nitric-oxide synthase in rat primary astrocytes. J. Biol. Chem., 273, 2591-2600 (1998) https://doi.org/10.1074/jbc.273.5.2591
  31. Pahan, K., Sheikh, F. G., Namboodiri, A. M., and Singh, I., Lovastatin and phenylacetate inhibit the induction of nitric oxide synthase and cytokines in rat primary astrocytes, microglia, and macrophages. J. Clin. Invest., 100, 2671-2679(1997a) https://doi.org/10.1172/JCI119812
  32. Palmer, R. M., Ferrige, A. G., and Moncada, S., Nitric oxide release accounts for the biological activity of endotheliumderived relaxing factor. Nature, 327, 524-526 (1987) https://doi.org/10.1038/327524a0
  33. Park, Y. C., Lee, C. H., Kang, H. S., Kim, K. W., Chung, H. T., and Kim, H. D., Ginsenoside-Rh1 and Rh2 inhibit the induction of nitric oxide synthesis in murine peritoneal macrophages. Biochem. Mol. Biol. Int., 40, 751-757 (1996)
  34. Radomski, M. W., Palmer, R. M., and Moncada, S., The antiaggregating properties of vascular endothelium: interactions between prostacyclin and nitric oxide. Br. J. Pharmacol., 92, 639-646 (1987) https://doi.org/10.1111/j.1476-5381.1987.tb11367.x
  35. Schreck, R., Rieber, P., and Baeuerle, P. A., Reactive oxygen intermediates as apparently widely used messengers in the activation of the NF-kappa B transcription factor and HIV-1. EMBO J., 10, 2247-2258 (1991)
  36. Simmons, M. L. and Murphy, S., Roles for protein kinases in the induction of nitric oxide synthase in astrocytes. Glia, 11, 227-2234 (1994) https://doi.org/10.1002/glia.440110303
  37. Takahashi, N., Hayano, T., and Suzuki, M., Peptidyl-prolyl cistrans isomerase is the cyclosporin A-binding protein cyclophilin. Nature, 337, 473-475 (1989) https://doi.org/10.1038/337473a0
  38. Tamaoki, J., Nakata, J., Kawatani, K., Tagaya, E., and Nagai, A., Ginsenoside-induced relaxation of human bronchial smooth muscle via release of nitric oxide. Br. J. Pharmacol., 130, 1859-1864 (2000) https://doi.org/10.1038/sj.bjp.0703511
  39. Thanos, D. and Maniatis, T., NF-kappa B: a lesson in family values. Cell, 80, 529-532 (1995) https://doi.org/10.1016/0092-8674(95)90506-5
  40. Towbin, H., Staehelin, T., and Gordon, J., Electrophoretic transfer of proteins from polyacrylamide gels to nitocellulose sheets: Procedure and some applications. Proc. Natl. Acad. Sci. U.S.A., 76, 4350-4354 (1979) https://doi.org/10.1073/pnas.76.9.4350
  41. Zhang, H., Chen, X., Teng, X., Snead, C., and Catravas, J. D., Molecular cloning and analysis of the rat inducible nitric oxide synthase gene promoter in aortic smooth muscle cells. Biochem. Pharmacol., 55, 1873-1880 (1998) https://doi.org/10.1016/S0006-2952(98)00078-1