Effects of Coptis japonica on Morphine-Induced Conditioned Place Preference in Mice

  • Lee, Seok-Yong (Department of Pharmacology, College of Pharmacy, Sungkyunkwan University) ;
  • Song, Dong-Keun (Department of Pharmacology and Institute of Natural Medicine, College of Medicine, Hallym University) ;
  • Jang, Choon-Gon (Department of Pharmacology, College of Pharmacy, Sungkyunkwan University)
  • Published : 2003.07.01

Abstract

Morphine, an analgesic with significant abuse potential, is considered addictive because of drug craving and psychological dependence. It is reported that repeated treatment of morphine can produce conditioned place preference (CPP) showing a reinforcing effect in mice. CPP is a useful method for the screening of morphine-induced psychological dependence. In the present study, we investigated the effect of the methanolic extract of Coptis japonica (MCJ) on morphine-induced CPP in mice. Furthermore, we examined c-fos expression in the parietal cortex, piriform cortex, striatum, nucleus accumbens, and hippocampus of the morphine-induced CPP mouse brain. Treatment of MCJ 100 mg/kg inhibited morphine-induced CPP. Expression of c-fos was increased in the cortex, striatum, nucleus accumbens, and hippocampus of the morphine-induced CPP mouse brain. These increases of expression were inhibited by treatment with MCJ 100 mg/kg, compared to the morphine control group. Taken together, these results suggest that MCJ inhibits morphine-induced CPP through the regulation of c-fos expression in the mouse brain.

Keywords

References

  1. Baker, H. and Farbman, A. I., Olfactory afferent regulation of the dopamine phenotype in the fetal rat olfactory system. Neuroscience, 52, 115-134 (1993) https://doi.org/10.1016/0306-4522(93)90187-K
  2. Bardo, M. T., Miller, J. S., and Neisewander, J. S., Conditioned place preference with morphine: The effect of extinction training on the reinforcing CR. Pharmacol. Biochem. Behav., 21, 545-549 (1984) https://doi.org/10.1016/S0091-3057(84)80037-4
  3. Bozarth, M. A., Neural basis of psychomotor stimulant and opiate reward: evidence suggesting the involvement of a common dopaminergic system. Behav. Brain Res., 22, 107-116 (1986) https://doi.org/10.1016/0166-4328(86)90032-X
  4. Frenois, F., Cador, M., Caille, S., Stinus, L., and Le Moine C., Neural correlates of the motivational and somatic components of naloxone-precipitated morphine withdrawal. Eur. J. Neurosci., 16, 1377-1389 (2002) https://doi.org/10.1046/j.1460-9568.2002.02187.x
  5. Graybiel, A. M., Moratalla, R., and Robertson, H. A., Amphetamine and cocaine induce drug-specific activation of the cfos gene in striosome-matrix compartments and limbic subdivisions of the striatum. Proc. Natl. Acad. Sci. USA, 87, 6912-6916 (1990) https://doi.org/10.1073/pnas.87.17.6912
  6. Hsieh, M. T., Peng W. H., Wu, C. R., and Wang W. H., The ameliorating effects of the cognitive-enhancing Chinese herbs on scopolamine-induced amnesia in rats. Phytotherapy Res., 14, 375-377 (2000) https://doi.org/10.1002/1099-1573(200008)14:5<375::AID-PTR593>3.0.CO;2-5
  7. Ivanovska, N. and Philipov, S., Study on the anti-inflammatory action of Berberis vulgaris root extract, alkaloid fractions and pure alkaloids. Int. J. Immunopharmacol., 18, 553-561 (1996) https://doi.org/10.1016/S0192-0561(96)00047-1
  8. Johnson, S. W. and North, R. A., Opioids excite dopamine neurons by hyperpolarization of local interneurons. J. Neurosci., 12, 483-488 (1992)
  9. Kim, H. S., Jang, C. G., and Park, W. K., Inhibition by MK-801 of morphine-induced conditioned place preference and postsynaptic dopamine receptor supersensitivity in mice. Pharmacol. Biochem. Behav., 55, 11-17 (1996) https://doi.org/10.1016/0091-3057(96)00078-0
  10. Klitenick, M. A., DeWitte, P., and Kalivas, P. W., Regulation of somatodendritic dopamine release in the ventral tegmental area by opioids and GABA: an in vivo microdialysis study. J. Neurosci., 12, 2623-2632 (1992)
  11. Koob, G. F. and Bloom, F. E., Cellular and molecular mechanisms of drug dependence. Science, 242, 715-723 (1988) https://doi.org/10.1126/science.2903550
  12. Koob, G. F., Drugs of abuse: anatomy, pharmacology and function of reward pathways. Trends Pharmacol. Sci., 13, 177-184 (1992) https://doi.org/10.1016/0165-6147(92)90060-J
  13. Lee, M. K. and Kim, H. S., Inhibitory effects of protoberberine alkaloids from the roots of Coptis japonica on catecholamine biosynthesis in PC12 cells. Planta Med., 62, 31-34 (1996) https://doi.org/10.1055/s-2006-957791
  14. Lee, M. K. and Zhang, Y. H., Inhibition of tyrosine hydroxylase by berberine. Med. Sci. Res., 24, 561-562 (1996)
  15. Lee, M. K., Zhang, Y. H., and Kim H. S., Inhibition of tyrosine hydroxylase by palmatine. Arch. Pharm. Res., 19, 258-260 (1996) https://doi.org/10.1007/BF02976236
  16. Mucha, R. F., van der Kooy, D., O'Shaughnessy, M., and Bucenieks, P., Drug reinforcement studied by the use of place conditioning in rat. Brain Res., 243, 91-105 (1982) https://doi.org/10.1016/0006-8993(82)91123-4
  17. Ro, J. S., Lee, S. S., Lee K. S., and Lee M. K., Inhibition of type A monoamine oxidase by coptisine in mouse brain. Life Sci., 70, 639-645 (2001) https://doi.org/10.1016/S0024-3205(01)01437-0
  18. Schmeller, T., Latz-Bruning, B., and Wink, M., Biochemical activities of berberine, palmatine and sanguinarine mediating chemical defense against microorganisms and herbivores. Phytochemistry, 44, 257-266 (1997) https://doi.org/10.1016/S0031-9422(96)00545-6
  19. Schwartz, A. S. and Marchok, P. L., Depression of morphineseeking behavior by dopamine inhibition. Nature, 248, 257-258 (1974) https://doi.org/10.1038/248257a0
  20. Shin, J. S., Kim, E. I., Kai, M., and Lee, M. K., Inhibition of dopamine biosynthesis by protoberberine alkaloids in PC12 cells. Neurochem. Res., 25, 363-368 (2000) https://doi.org/10.1023/A:1007541020736
  21. Shippenberg, T. S. and Herz, A., Place preference conditioning reveals the involvement of D1-dopamine receptors in the motivational properties of mu-and kappa-opioid agonists. Brain Res., 436, 169-172 (1987) https://doi.org/10.1016/0006-8993(87)91571-X
  22. Shippenberg, T. S. and Herz, A., Motivational effects of opioids: influence of D-1 versus D-2 receptor antagonists. Eur. J. Pharmacol., 151, 233-242 (1988) https://doi.org/10.1016/0014-2999(88)90803-5
  23. Shuster, L., Hannam, R. V., and Boyle, W. E. Jr., A simple method for producing tolerance to dihydromorphine in mice. J. Pharmacol. Exp. Ther., 140, 149-153 (1963)
  24. Tolliver, B. K., Sganga, M. W., and Sharp, F. R., Suppression of c-fos induction in the nucleus accumbens prevents acquisition but not expression of morphine-conditioned place preference. Eur. J. Neurosci., 12, 3399-3406 (2000) https://doi.org/10.1046/j.1460-9568.2000.00214.x
  25. van der Kooy, D., Place conditioning: a simple and effective method for assessing the motivational properties of drugs. In: M.A. Bozarth (ed.), Methods of Assessing the Reinforcing Properties of Abuse Drugs, Springer, New York, pp. 229-240 (1987)
  26. Wise, R. A. and Rompre, P. P., Brain dopamine and reward. Ann. Rev. Psychol., 40, 191-225 (1989) https://doi.org/10.1146/annurev.ps.40.020189.001203
  27. Wise, R. A. and Bozarth, M. A., A psychomotor stimulant theory of addiction. Psychol. Rev., 94, 469-492 (1987) https://doi.org/10.1037/0033-295X.94.4.469
  28. Young, S. T., Porrino, L. J., and Iadarola, M. J., Cocaine induces striatal c-fos-immunoreactive proteins via dopaminergic D1 receptors. Proc. Natl. Acad. Sci. USA, 88, 1291-1295 (1991) https://doi.org/10.1073/pnas.88.4.1291