Inhibitory Effect of Trans-N-p-Coumaroyl Tryamine from the Twigs of Celtis chinensis on the Acetylcholinesterase

  • Published : 2003.09.01

Abstract

The methanolic extract of the twigs of Celtis chinensis was found to show inhibitory activity on acetylcholinesterase (AChE), an enzyme that plays a role in the metabolic hydrolysis of ACh. Bioassay-guided fractionation of the methanolic extract resulted in the isolation of N-p-coumaroyl tyramine. as an inhibitor on AChE. This compound inhibited AChE activity in a dose-dependent manner, and the $IC_50$ value of trans-N-p-coumaroyl tyramine was 34.5 $\mu$g/mL (122 $\mu$M).

Keywords

References

  1. Bartus, R. T., On neurodegenerative diseases, models, and treatment strategies: lessons learned and lessons forgotten a generation following the cholinergic hypothesis. Exp. Neurol., 163, 495-529 (2000) https://doi.org/10.1006/exnr.2000.7397
  2. Bartus, R. T., Dean, R. L., Beer, B., and Lippa, A. S., The cholinergic hypothesis of geriatric memory dysfunction. Science, 217, 408-414 (1982) https://doi.org/10.1126/science.7046051
  3. Broadwell, R. D. and Sofroniew, M. V., Serum proteins bypass the blood-brain fluid barriers for extracellular entry to the central nervous system. Exp. Neurol., 120, 245-263 (1993) https://doi.org/10.1006/exnr.1993.1059
  4. But, Paul P. H. Kimura, T. Guo, J. X., and Sung, C. K., International collation of traditional and folk medicine: Part 2. World scientific, Singapore, pp. 22-23, (1997)
  5. Chung, Y. K., Heo, H. J., Kim, E. K., Kim, H. K., Huh, T. L, Lim, Y., Kim, S. K., and Shin, D. H., Inhibitory effect of ursolic acid purified from Origanum majorana L. on the acetylcholinesterse. Mol. Cells, 11, 137-143 (2001)
  6. Dennis, T. V. and John, C. M., The diagnosis of Alzheimers disease. Alzheimers Disease Review, 3, 142-152 (1998)
  7. Ellman, G. L., Courtney, D., Valentino, A., and Featherstone, R. M., A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem. Pharmacol., 7, 88-95 (1961)
  8. Hwang, S. Y., Chang, Y. P., Byun, S. J., Jeon, M. H., and Kim, Y, C., An acetylcholinesterase inhibitor isolated from Corydalis tuber and its mode of action. Kor. J. Pharmacogn., 27, 91-95 (1996)
  9. Mortensen, S. R., Chanda, S. M., Hooper, M. J., and Padilla, S., Maturational differences in chlorpyrifos-oxonase activity may contribute to age-related sensitivity to chlorpyrifos. J. Biochem. Toxicol., 11, 279-287 (1996) https://doi.org/10.1002/(SICI)1522-7146(1996)11:6<279::AID-JBT3>3.0.CO;2-H
  10. Numata, A., Katsuno, T., Yamamoto, K., Nishida, T., Takemura, T., and Seto, K., Plant constituents biologically active to insects. IV: antifeedants for the larvae of the yellow butterfly, Eurema hecabe mandarina, in Arachniodes standishii. Chem. Pharm. Bull., 32, 325-331 (1984) https://doi.org/10.1248/cpb.32.325
  11. Okuyama, T., Shibata, S., Hoson, M., Kawada, T., Osada, H., and Noguchi., Effect of oriental plant drugs on platelet aggregation: III. Effect of Chinese drug 'Xiebai' on human platelet aggregation. Planta Med., 171-175 (1986)
  12. Park, C. H., Kim, S. H., Choi, W., Lee, Y. J., Kim, J. S., Kang, S. S., and Suh, Y. H., Novel anticholinesterase and antiamnesic activities of dehydroevodiamine, a constituent of Evodia rutaecarpa. Planta Med., 62, 405-409 (1996) https://doi.org/10.1055/s-2006-957926
  13. Perry, E. K., The cholinergic hypothesis--ten years on. Br. Med. Bull., 42, 63-69 (1986) https://doi.org/10.1093/oxfordjournals.bmb.a072100
  14. Rhee, I. K., van de Meent, M., Ingkaninan, K., and Verpoorte, R., Screening for acetylcholinesterase inhibitors from Amaryllidaceae using silica gel thin-layer chromatography in combination with bioactivity staining. J. Chromatogr. A, 915, 217-223 (2001) https://doi.org/10.1016/S0021-9673(01)00624-0
  15. Riger, F., Shelanski, M. L., and Greene, L. A., The effects of nerve growh factor on acetylcholinesterase and its multiple forms in cultures of rat PC12 pheochromocytoma cells; increased total specific activity and appearance of the 16 S molecular form. Dev. Biol., 76, 238-243 (1980) https://doi.org/10.1016/0012-1606(80)90376-0
  16. Yosihara, T., Takamatsu, S., and Sakamura, S., Three new phenolic amides from the roots of eggplants (Solanum melongena L.). Agric. Biol. Chem., 42, 623-627 (1978) https://doi.org/10.1271/bbb1961.42.623
  17. Zhao, G., Hui, Y., Rupprecht, J. K., and Mclaughlin, J. L., Additional bioactive compounds and trilobacin, a novel highly cytotoxic acetogenin from the bark of Asimina trilova. J. Nat. Prod., 55, 347-356 (1992) https://doi.org/10.1021/np50081a011