Review of Advances in Biological $CO_2$Mitigation Technology

  • Lee, Jin-Suk (Biomass Center, Korea Institute of Energy Research) ;
  • Lee, Joon-Pyo (Biomass Center, Korea Institute of Energy Research)
  • Published : 2003.12.01

Abstract

$CO_2$fixation by microalgae has emerged as a promising option for $CO_2$mitigation. In-tensive research work has been carried out to develop a feasible system for removing $CO_2$from industrial exhaust gases. However, there are still several challenging points to overcome in order to make the process more practical. In this paper, recent research activities on three key technologies of biological $CO_2$fixation, an identification of a suitable algal strain, development of high efficient photobioreactor and utilization of algal cells produced, are described. Finally the barriers, progress, and prospects of commercially developing a biological $CO_2$fixation process are summarized.

Keywords

References

  1. Carbon dioxide capture from power stations IEA
  2. Biomass Bioenergy v.17 Possibility of renewable energy production and CO₂ mitigation by thermochemical liquefaction of microalgae Sawayama,S.;T.Minowa;S.Yokoyama https://doi.org/10.1016/S0961-9534(99)00019-7
  3. J. Microb. Biotechnol. v.11 Co₂ fixation by Chlorella KR-1 using flue gas and its utilization as a feedstuff for chicks Lee,J.S.;D.G.Kim;J.P.Lee;S.C.Park;J.H.Koh;S.J.Ohh
  4. Microalgae (1st ed.) Becker,E.W.
  5. Chemicals from Microalgae Chemicals of Botryococcus braunii Metzger,P.;C.Largeau;Z.Cohen(ed.)
  6. Biomolecular Eng. v.20 COmmercial development of microalgal biotechnology: from the test tube to the marketplace Olaizola,M. https://doi.org/10.1016/S1389-0344(03)00076-5
  7. Adv. Biochem. Eng. Biotechnol. v.46 Biotechnology reduction of CO₂ emissions Karube,I.;T.Takeuchi;D.J.Barnes
  8. Energy Convers. Mgmt. v.38 The biological CO₂ fixation and utilization project RITE (1) Usui,N.;M.Ikenouchi https://doi.org/10.1016/S0196-8904(96)00315-9
  9. Sci. Total Environ. v.224 A study for the biological CO2 fixation and utilization system Otsuki,T.
  10. Energy Convers. Mgmt. v.38S Biological fossil CO₂ mitigation Hughes,E.;J.Benemann
  11. Photosyn. Res. v.46 The potential application of cyanobacterial photosystnesis for clean technologies Hall,D.O.;S.A.Markov;Y.watanabe;K.K.Rao https://doi.org/10.1007/BF00020426
  12. J. Gen. Microbioi. v.130 Carbon dioxide inhibition cf photosynthetic growth of Chlorella Silva,H.;S.J.Pirt
  13. Appl. Phycol. v.3 High CO₂ partial pressure depresses productivity and bioenergenetic growth yield of Chlorella pyrenoidosa culture Lee,Y.;H.S.Tay https://doi.org/10.1007/BF00003690
  14. Energy Convers. Mgmt. v.33 Isolation and determination of cultural characteristics of microalgae which functions under CO₂ enriched atmosphere Watanabe,Y.;N.Ohmura;H.Saiki https://doi.org/10.1016/0196-8904(92)90054-Z
  15. J. Mar. Biotechnol. v.1 A new species of highly CO₂-tolerant fast growing marine microalga suitable for high density culture Kodama,M.;H.Ikemoto;S.Miyachi
  16. Phytochem. v.31 Tolerance of microalgae to high CO₂ and high temperature Hanagata,N.;T.Takeuchi;Y.Fukuju;D.J.Barnes;I.Karube https://doi.org/10.1016/0031-9422(92)83682-O
  17. Energy Convers. Mgmt. v.36 CO₂ fixation from flue gas on coal-fired thermal power plant by microalgae Maeda,K.;M.Owada;N.Kimura;K.Omata;I.Karube https://doi.org/10.1016/0196-8904(95)00105-M
  18. Energy Convers. Mgmt. v.36 Chlorella stains from hot springs tolerant to high temperature and high CO₂ Sakai,N.;Y.Sakamoto;N.Kishimoto;M.Chihara;I.Karube https://doi.org/10.1016/0196-8904(95)00100-R
  19. Kor, J. ChE. v.15 Isolation of a new highly CO₂ tolerant fresh-water microalga Chlorella KR-1 Sung,K.D.;J.S.Lee;C.S.Shin;S.C.Park https://doi.org/10.1007/BF02697138
  20. Energy Convers. Mgmt. v.38 The biological CO₂ fixation and utilization project by RITE: Screening and breeding of microalgae with high capability in fixing CO₂ Murakami,M.;M.Ikenouchi https://doi.org/10.1016/S0196-8904(96)00316-0
  21. Plant Physiol. v.91 Isolation and characterization of high CO₂ requiring- mutants of the Cyanobacterium Synechococcus PCC7942 Price,G.D.;M.R.Badger https://doi.org/10.1104/pp.91.2.514
  22. Biotechnol. Tech. v.10 Enhancement of CO₂ tolerances of Chlorella vulgaris by gradual increase of CO₂ concentration Yun,Y.S.;J.M.Park;J.W.Yang
  23. Proceedings of 212th ACS National Meeting Effects of simulated flue gas on growth of microalgae Hauck,J.T.;G.J.Scierka;S.J.Perry;M.M.Ataai
  24. Energy Convers. Mgmt. v.36 Fixation and utilization of carbon dioxide by microalgal photosynthesis Kurano;N.H.Ikemoto;H.Miyashita;H.Hasegawa;T.Hata;S.Miyachi https://doi.org/10.1016/0196-8904(95)00099-Y
  25. Biores. Technol. v.82 Effects of So₂ and NO on growth of Chlorella sp. KR-1 Lee,J.S.;D.G.Kim;J.P.Lee;S.C.Park;J.H.Koh;H.S.Cho;S.W.Kim https://doi.org/10.1016/S0960-8524(01)00158-4
  26. Appl. Biochem. Biotechnol. v.84;86 Methods to enhance tolerances of Chlorella KR-1 to toxic compounds in flue gas Lee,J.N.;J.S.Lee;C.S.Shin;S.C.Park;S.W.Kim
  27. Japan Patent 8-9963 A new highly CO₂ tolerant microalga for CO₂ fixation Kurano,N.
  28. Japan Patent 5-304945 A highly CO₂ tolerant microalga Watanabe,Y.
  29. Japan Patent 8-56648 CO₂ fixation method using a new microalga Hirano,A.
  30. Biores. Technol. v.68 CO₂ fixation by Chlorella KR-1 and its cultural characteristics Sung,K.D.;J.S.Lee;C.S.Shin;S.C.Park;M.J.Choi https://doi.org/10.1016/S0960-8524(98)00152-7
  31. Japan Patent 3013990 A highly CO₂ and SOx tolerant microalga and its utilization for CO₂ fixation Lee,J.S.;K.W.Lee;M.J.Choi;K.D.Sung;C.S.Shin;S.C.Park
  32. Energy Convers. Mgmt. v.37 Uptake of carbon dioxide from flue gas by microalgae Borwn,L.M. https://doi.org/10.1016/0196-8904(95)00347-9
  33. Appl. Biochem. Biotechnol. v.45;46 Carbon dioxide fixation by microalgal photsynthesis using actual flue gas from a power plant Hamasaki,A.;N.Shioji;Y.Ikuta;Y.Hukuda;T.Makita;K.Hirayama;H.Matuzaki;T.Tukamoto;S.Sasaki
  34. Proceedings of 1st National Conference on Carbon Sequestration A proposal to establish an international network on biofixation of CO₂ and greenhouse gas abatement with microalgae Pedroni,P.;J.Davison;H.Beckert;P.Bergman;J.Benemann
  35. Austral. Biotechnol. v.4 Large-scale algal culture systems: The next generation Borowitzka,M.A.
  36. Encyclopedia of Bioprocess Technology: Fermentation, Biocatalysis and Bioseparation v.1 Bioreactors, photo. Tredici,M.R.;M.C.Flickinger(ed.);S.W.Drew(ed.)
  37. J. Appl. Phycol. v.13 Microalgal mass culture systems and methods: their limitation and potential Lee,Y.K. https://doi.org/10.1023/A:1017560006941
  38. Appl. Microb. Biotechnol. v.57 Photobioreactors: Production systems for phototrophic microorganisms Pulz,O. https://doi.org/10.1007/s002530100702
  39. Proceedings of 1st National Conference on Carbon Sequestration Enhanced practical photosynthetic CO₂ mitigation Bayless,D.J.;G.G.Kremer;M.E.Prudich;B.J.Stuart;M.L.Chiasson;K.Cooksey;J.Muhs
  40. J. Biosci. Bioeng. v.89 Photosynthetic production of microalgal biomass in a raceway system under greenhouse conditions in Sendai city Hase,R.;H.Okigawa;C.Sasao;M.Morita;Y.Watanabe https://doi.org/10.1016/S1389-1723(00)88730-7
  41. Proceedings of 4th International Conference on Greenhouse Gas Control Technologies Investigation of a cone-shaped helical tubular photobioreactor design in terms of practical use Morita,M.;Y.Watanabe;H.Saiki
  42. Biotechnol. Lett. v.23 photosynthetic performance of a cyanobacterium in a vertical flatplate photobioreactor for outdoor microalgal production and fixation of CO₂ Zhang,K.;S.Miyachi;N.Kurano https://doi.org/10.1023/A:1026737000160
  43. Aquaculture v.195 An industrial-size flat plate glass reactor for mass production of Nannochloropsis sp. Zhang,C.W.;O.Zmora;R.Kopel;A.Richimond https://doi.org/10.1016/S0044-8486(00)00533-0
  44. Proceedings of Symposium on Microalgae and Seaweed Products in Plant/Soil Systems Industrial microalgal production plant in Germany: Design and Scale-up Pulz,O.
  45. Biotechnol. Bioeng. v.38 Effect of photobioreactor inclination on the biomass productivity of an outdoor algal culture Lee,Y.K.;C.S.Low https://doi.org/10.1002/bit.260380906
  46. J. Appl. Phycol. v.15 Mass cultivation of Nannochloropsis sp. in annular reactors Zittelli,G.C.;R.Liliana;M.Tredici https://doi.org/10.1023/A:1023830707022
  47. Appl. Biochem. Biotechnol. v.34;35 CO₂ removal by high-density culture of a marine cyanobacterium Synechococcus sp. using an improved photobioreactor employing light-diffusing optical fibers Takano,H.;H.Takeyama;N.Nakamura;K.Sode;J.G.Burgess;E.Manabe;M.Hirano;T.Matsunaga
  48. Energy Convers. Mgmt. v.36 Biological CO₂ fixation and utilization project Michiki,H. https://doi.org/10.1016/0196-8904(95)00102-J
  49. Energy Convers. Mgmt. v.33 Reduction of carbon dioxide emission from flue gas with microalgae cultivation Nishikawa,N.;K.Hon-Nami;K.Hirano;Y.Ikuta;H.Hukuda;M.Negoro;M.Kanebo;M.Hada https://doi.org/10.1016/0196-8904(92)90055-2
  50. Research on effective culture of microalgae Tokyo Electric Power Company R&D Center
  51. J. Appl. Phycol. v.10 Dunaliella salina (Chlorophyta) with small chlorophyll antenna sizes exhibit higher photosynthetic productivities and photon use efficiencies than normally pigmented cells Melis,A.;J.Neidhardt;J.R.Benemann
  52. J. Appl. Phycol. v.12 The effect of reducing light-harvesting pigment on marine microalgal productivity Nakajima,Y.;R.Ueda https://doi.org/10.1023/A:1008108500409
  53. Biotechnol. Bioeng. v.34 Hydrocarbon recovery and biocompatibility of solvents for extraction from cultures of Botryococcus braunii Frenz,J.;C.Largeau;E.Casadevall;F.Kollerup;A.J.Daugulis https://doi.org/10.1002/bit.260340605
  54. Proceedings of 1st National Conference on Carbon Sequestration Capture and sequestration of CO₂ from stationary combustion systems by photosynthesis of microalgae Nakamura,T.;M.Olaizola;S.Masutani
  55. Energy Convers. Mgmt. v.38 Co₂ mitigation with microalgae systems Benemann,J.R. https://doi.org/10.1016/S0196-8904(96)00313-5
  56. R&D Report of Global Environment Group Research on Fixation and effective utilization of CO₂ using microalgae Tokyo Electric Power Company R&D Center
  57. Catalysis Today v.45 temperature effect on continuous gasification of microalgal biomass: Theoretical yield of methanol production and its balance Hirano,A.;K.Hon-Nami;S.Kunito;M.Hada;Y.Ogushi https://doi.org/10.1016/S0920-5861(98)00275-2