Microalgal Removal of $CO_2$from Flue Gases: Changes in Medium pH and Flue Gas Composition Do Not Appear to Affect the Photochemical Yield of Microalgal Cultures

  • Published : 2003.12.01

Abstract

Our research objectives are to determine under what conditions microalgal-based $CO_2$capture from flue gases is economically attractive. Specifically, our objective here was to select microalgae that are temperature, pH and flue gas tolerant. Microalgae were grown under five different temperatures, three different pH and five different flue gas mixtures besides 100% $CO_2$(gas concentrations that the cells were exposed to ranged 5.7-100% $CO_2$, 0-3504ppm SO$_2$, 0-328ppm NO, and 0-126ppm NO$_2$). Our results indicate that the microalgal strains tested exhibit a substantial ability to withstand a wide range of temperature (54 strains tested), pH (20 strains tested) and flue gas composition (24 strains tested) likely to be encountered in cultures used for carbon sequestration from smoke stack gases. Our results indicate that microalgal photosynthesis is a limited but viable strategy for $CO_2$capture from flue gases produced by stationary combustion sources.

Keywords

References

  1. Energy v.27 Environmental implications of power generation via coal-microalgae cofiring Kadam,K.L. https://doi.org/10.1016/S0360-5442(02)00025-7
  2. Carbon dioxide capture from power stations IEA (International Energy Agency)
  3. J. Appl. Phycol. v.7 Microalgae as sources of pharmaceuticals and other biologically active compounds Borowitzka,M.A. https://doi.org/10.1007/BF00003544
  4. Single Cell Protein Large scale production of algae Oswald,W.J.;C.G.Golueke;R.I.Mateles(ed.);S.R.Tanebaum(ed.)
  5. Energy Conv. Manag. v.38 Power plant flue gas as a source of CO₂ for microalgae cultivation: Economic impact of different process options Kadam,K.L. https://doi.org/10.1016/S0196-8904(96)00318-4
  6. National Renewable Energy Laboratory, Golden, CO, NREL/TP-580-24190 A Look Back at the U.S. Department of Energy's Aquatic Species Program - Biodiesel from Algae Sheehan,J.;T.Dunnahay;J.Benemann;P.Roessler
  7. Phytochem. v.31 Tolerance of microalgae to high CO₂ and high temperature Hanagata,N.;T.Takeuchi;Y.Fukuju;D.J.Barnes;I.Karube https://doi.org/10.1016/0031-9422(92)83682-O
  8. J. Chem. Tech. Biotechnol. v.69 Carbon dioxide fixation by algal cultivation using wastewater nutrients Yun,Y.S.;S.B.Lee;J.M.Park;C.I.Lee;J.W.Yang https://doi.org/10.1002/(SICI)1097-4660(199708)69:4<451::AID-JCTB733>3.0.CO;2-M
  9. Biores. Biotechnol. v.82 Effects of SO₂ and NO on growth of Chlorella sp. KR-1 Lee,J.S.;D.K.Kim;J.P.Lee;S.C.Park;J.H.Koh;H.S.Cho;S.W.Kim https://doi.org/10.1016/S0960-8524(01)00158-4
  10. Appl. Biochem. Biotechnol. v.28;29 Growth of microalgae in high CO₂ gas and effects of SOx and Nox Negoro,M.;N.Shioji;K.Miyamoto;Y.Miura
  11. Energy Conv. Manag. v.38 The biological CO₂ fixation and utilization by RITE (2) Screening and breeding of microalgae with high capability in fixing CO₂ Murakami,M.;M.Ikenouchi https://doi.org/10.1016/S0196-8904(96)00316-0
  12. Bot. Bull. Acad. Sin. v.44 Microalgae for biofixation of carbon dioxide Chang,E.H.;S.S.Yang
  13. Energy Conv. Manag. v.36 CO₂ fixation from the flue gas on coal-fired thermal power plant by microalgae Maeda,K.;M.Owada;N.Kimura;K.Omata;I.Karube https://doi.org/10.1016/0196-8904(95)00105-M
  14. Biores. Biotechnol. v.68 Co₂ fixation by Chlorella sp. KR-1 and its cultural characteristics Sung,K.D.;J.S.Lee;C.S.Shin;S.C.Park;M.J.Choi https://doi.org/10.1016/S0960-8524(98)00152-7
  15. Phycological studies. IV. Some algae from enchanted rock and related algal species Bischoff,H.W.;H.C.Bold
  16. Photosyn. Res. v.10 Continuous recording of photochemical and non-photochemical chlorophyll fluorescence quenching with a new type of modulation flourescence quenching with a new thpe of modulation fluorometer Schreiber,U.;U.Schliwa;W.Bilger https://doi.org/10.1007/BF00024185
  17. J. Exp. Bot. v.51 Chlorophyll fluorescence - a practical guide Maxwell,K.;G.N.Johnson https://doi.org/10.1093/jexbot/51.345.659
  18. Appl. Biochem. Biotechnol. v.84;86 Methods to enhance tolerances of Chlorella KR-1 to toxic compounds in flue gas Lee,J.N.;J.S.Lee;C.S.Shin;S.C.Park;S.W.Kim
  19. Energy Conv. Manag. v.37 Uptake of carbon dioxide from flue gas by microalgae Brown,L.W. https://doi.org/10.1016/0196-8904(95)00347-9
  20. J. Ferment. Bioeng. v.83 Characteristics of biological NOx removal from flue gas in a Dunaliella tertiolecta culture system Nagase,H.;K.I.Yoshihara;K.Eguchi;Y.Yokota;R.Matsui;K.Hirata;K.Miyamoto https://doi.org/10.1016/S0922-338X(97)83001-2
  21. Biochem. Eng. J. v.7 Uptake pathway and continuous removal of nitric oxide from flue gas using microalgae Nagase,H.;K.I.Yoshihara;K.Eguchi;Y.Okamoto;S.Murasaki;R.Yamashita;K.Hirata;K.Miyamoto https://doi.org/10.1016/S1369-703X(00)00122-4
  22. Water Res. v.13 Outdoor algal mass cultures: Ⅰ. Applications Goldman,J.C. https://doi.org/10.1016/0043-1354(79)90249-5
  23. Planta v.209 Photoadaptation of two members of the Chlorphyta (Scendesmus and Chlorella) in laboratory and outdoor cultures: Changes in chlorphyll fluorescence quenching and the xanthophyll cycle Masojidek,J.;G.Torzillo;M.Koblizek;J.Kopeck;P.Bernardini;A.Sacchi;J.Komenda https://doi.org/10.1007/s004250050614