Effect of ionic Salt Strength on the Growth and Photosynthetic Rate of Pepper Plug Seedlings

무기 이온의 농도가 고추 플러그묘의 생육과 광합성에 미치는 영향

  • Ahn, Chong-Kil (Department of Horticulture, Miryang National University) ;
  • Son, Beung-Gu (Department of Horticulture, Miryang National University) ;
  • Kang, Jum-Soon (Department of Horticulture, Miryang National University) ;
  • Lee, Yong-Jae (Department of Horticulture, Miryang National University) ;
  • Park, In-Soo (Department of Plant Resources, Miryang National University) ;
  • Choi, Young-Whan (Department of Horticulture, Miryang National University)
  • Published : 2003.06.01

Abstract

Experiments were conducted to investigate optimal ionic salt strength in nutrient solution for small plug seedlings of ‘Nokgwang’ and ‘Kwari’ green pepper. Plant height increased with increasing ionic salt strength. total leaf area was 72% greater in ‘Nokgwang’ and 18% greater in ‘Kwari’with 2.0 ionic salt strength than that with 1.0 strength. Dry weight per plant tended to increase at higher ionic salt strengths in ‘Kwari’, but to decrease in ‘Nokgwang’ Chlorophyll content increased with increasing ionic salt strength in both cultivars. Photosynthetic rate, stomatal conductance, and transpiration rate were higher for plants fertilized with 1.5 strength than other strengths in both cultivars. Photosynthetic rate peaked at 8.74 $\mu$mol$.$m$^{-2}$ s$^{-1}$ in ‘Nokgwang’ and 5.70 $\mu$mol$.$m$^{-2}$ s$^{-1}$ in‘Kwari’with 1.5 ionic salt strength.

풋고추의 육묘관리시에 최적 시비농도를 구명하기 위하여 무기이온을 농도별로 처리한 다음 식물체의 생육과 광합성에 미치는 효과를 조사하였다. 초장은 무기이온의 농도가 증가할수록 길었으며, 표준농도인 1.0배를 시비한 것보다 2.0배의 고농도로 시비하였을 때에 ‘녹광’은 72%, ‘꽈리’는 18% 신장생장이 촉진되었다. 건물중은 ‘꽈리’의 경우에 무기이온의 농도가 높을수록 증가하였으나, ‘녹광’의 경우에는 고농도인 2.0배 처리시에는 오히려 감소하였다. 엽록소의 함량은 무기이온의 농도가 2.0배까지 높을수록 증가하였다 광합성속도, 기공전도도 및 증산속도는 두 품종 모두 1.5배의 농도로 관주하였을 때에 가장 높았는데, 이때의 광합성속도를 비교하면 ‘녹광’은 8.74$\mu$mol$.$m$^{-2}$ s$^{-1}$, ‘꽈리’는 5.10$\mu$mol$.$m$^{-2}$ s$^{-1}$로서 생육이 왕성하였던 ‘녹광’의 광합성속도가 더 높았다.

Keywords

References

  1. Baldwin, J.P., P.H. Nye, and P.B. Tinker. 1973. Uptake of solutions by multiple root systems from soil. III. A model for calculating the solute uptake by a randomly dispersed root system developing in a finite volume of soil. Plant and Soil 38:621-635 https://doi.org/10.1007/BF00010701
  2. Barber, S.A. and J.H. Cushman. 1981. Nitrogen uptake model for agronomic crops. p. 382-409. In: J.K Iskandar (ed.). Modeling waste water renovation-land treatment. John Wiley and Sons, New York
  3. Classen, N. and S.A. Barber. 1976. Simulation model for nutrient uptake from soil by growing plant system. Agron. J. 68:961-964 https://doi.org/10.2134/agronj1976.00021962006800060030x
  4. Classen, N., K.M. Syring, and A. Jungk. 1986. Verification of a mathematical model by simulating potassium uptake from soil. Plant and Soil 95:209-220 https://doi.org/10.1007/BF02375073
  5. Friend, D.J.C. and V.A. Helson. 1976. Thermoperiodic effects on the growth and photosynthesis of wheat and other crop plants. Bot. Gaz. 137:75-84 https://doi.org/10.1086/336844
  6. Golika, P.I. 1966. Effect of cutting of vine shrubs on the development of photosynthetic apparatus of leaves. Fiziol. Rast. 13:607-613
  7. Goryshina, T.K., L.N. Zabotina, and E.G. Pruzhina.1981. Mesostructure of the photosynthetic apparatus of Anemone nemorosa L. in different localities. Ekologiya 1981(1):19-26
  8. Sundqvist, C., L.O. Bjorn, and H.I. Virgin. 1980. Factors in chloroplast differentiation. p. 201-224. In: J. Reinert (ed.). Results and problems in cell differentiation. Springer-Verlag, Berlin-Heidelberg-New York
  9. Weiland, R.T., R.D. Noble, and R.E. Crang. 1975. Photosynthetic and chloroplast ultrastructural consequences of manganese deficiency in soybean. Amer.J. Bot. 62:501-508 https://doi.org/10.2307/2441958
  10. Yamazaki, K. 1982. Soilless culture. Hakuyu Press, Tokyo. p.34-40
  11. Zelitch, I. 1982. The close relationship between net photosynthesis and crop yield. BioScience 32:796-802 https://doi.org/10.2307/1308973