Constituents of the Stems and Fruits of Opuntia ficus-indica var. saboten

  • Lee, Eun-Ha (Division of Life Sciences, Korea Institute of Science & Technology) ;
  • Kim, Hyoung-Ja (Division of Life Sciences, Korea Institute of Science & Technology) ;
  • Song, Yun-Seon (Division of Life Sciences, Korea Institute of Science & Technology) ;
  • Jin, Chang-Bae (Division of Life Sciences, Korea Institute of Science & Technology) ;
  • Lee, Kyung-Tae (College of Pharmacy, Kyung Hee University) ;
  • Cho, Jung-Sook (College of Medicine, Dongguk University) ;
  • Lee, Yong-Sup (Division of Life Sciences, Korea Institute of Science & Technology)
  • Published : 2003.11.01

Abstract

From the stems and fruits of Opuntia ficus-indica var. saboten, eight flavonoids, kaempferol (1), quercetin (2), kaempferol 3-methyl ether (3), quercetin 3-methyl ether (4), narcissin (5), (+)-dihydrokaempferol (aromadendrin, 6), (+)-dihydroquercetin (taxifolin, 7), eriodictyol (8), and two terpenoids, (6S,9S)-3-oxo-$\alpha-ionol-\beta$-D-glucopyranoside (9) and corchoionoside C (10) were isolated and identified by means of chemical and spectroscopic. Among these isolates, compounds 3∼5 and 8∼10 were reported for the first time from the stems and fruits of O. ficusindica var. saboten.

Keywords

References

  1. Agrawal, P. K., Carbon-13 NMR of flavonoids. Elsevier, 103-106, 287 (1989)
  2. Ahn, D. K., Illustrated book of Korean Medicinal herbs. Kyohaksa, Korea, 497 (1998)
  3. Calis, i., Kuruuzum, A., Lorenzetto, P. A., and Ruedi, P., (6S)-Hydroxy-3-oxo-$\alpha$-ionol glucosides from Capparis spinosa fruits. Phytochemistry, 59, 451-457 (2002) https://doi.org/10.1016/S0031-9422(01)00399-5
  4. Cui, B., Nakamura, M., Kinjo, J., and Nohara, T., Chemical constituents of Astragali semen. Chem. Pharm. Bull., 41, 178-182 (1993) https://doi.org/10.1248/cpb.41.178
  5. Gaffield, W., Circular dichroism, optical rotatory dispersion and absolute configuration of flavanones, 3-hydroxyflavanones and their glycosides: Determination of aglycone chirality in flavanone glycosides.Tetrahedron, 26, 4093-4108 (1970) https://doi.org/10.1016/S0040-4020(01)93050-9
  6. Impellizzeri, G., and Piattelli, M., Biosynthesis of indicaxanthin in opuntia ficus-indica fruits. Phytochemistry, 11, 2499-2502 (1972) https://doi.org/10.1016/S0031-9422(00)88524-6
  7. Jeong, S. J., Jun, K. Y., Kang, T. H., Ko, E. B., and Kim, Y. C., Flavonoids from the fruits of Opuntia ficus-indica var. saboten. Saengyak Hakhoechi, 30, 84-86 (1999)
  8. Lopez, D., A Review: use of the fruits and stem of prickly pear cactus (Opuntia spp) into human food. Food Sci. Technol. Int., 1, 65-74 (1995) https://doi.org/10.1177/108201329500100202
  9. Markham, K. R., Webby, R. F., and Vilain, C., 7-O-Methyl-(2R:3R)-dihydroquercetin 5-O-$\beta$-D-glucoside and other flavonoids from Podocarpus nivalis. Phytochemistry, 23, 2049-2052 (1984) https://doi.org/10.1016/S0031-9422(00)84968-7
  10. Matsuda, H., Nishida, N., and Yoshikawa, M., Antidiabetic principles of natural medicines. V. Aldose reductase inhibitors from Myrcia multiflora DC. (2): structures of myrciacitrins III, IV, and V. Chem. Pharm. Bull., 50, 429-431 (2002) https://doi.org/10.1248/cpb.50.429
  11. Mohamed-Yasseen, Y, Barringer, S. A., Splittstoesser, W. E., and Schnell, R. J., Rapid propagation of tuna (Opuntia ficus indica) and fruit establishment in soil. Fruit Cell Tissue Organ Culture, 42, 117-119 (1995) https://doi.org/10.1007/BF00037690
  12. Nakano, K., Nishizawa, K., Takemoto, I., Murakami, K., Takaishi, Y., and Tomimatsu, T., Flavonol and phenylpropanoid glycoside from Lilium cordatum. Phytochemistry, 28, 301-303 (1989) https://doi.org/10.1016/0031-9422(89)85070-8
  13. Nonaka, G., Goto, Y., Kinjo, J., Nohara, T., and Nishioka, I., Tannins and related compounds. Stdies on the constituents of the leaves of Thujopsis dolabrata SIEB. et ZUCC. Chem. Pharm. Bull., 35, 1105-1108 (1987) https://doi.org/10.1248/cpb.35.1105
  14. Pabst, A., Barron, D., Semon, E., and Schreier, P., Two diastereomeric 3-oxo-$\alpha$-ionol $\beta$-D-glucosides from raspberry fruit. Phytochemistry, 31, 1649-1652 (1992) https://doi.org/10.1016/0031-9422(92)83121-E
  15. Roitman, J. N. and James, L. F., Chemistry of toxic range plants. Highly oxygenated flavonol methyl ethers from Gutierrezia microcephala. Phytochemistry, 24, 835-848 (1985) https://doi.org/10.1016/S0031-9422(00)84904-3
  16. Stevens, J. F., Wollenweber, E., Ivancic, M., Hsu, V. L., Sundberg, S., and Deinzer, M. L., Leaf surface flavonoids of Chrysothamnus. Phytochemistry, 51, 771-780 (1999) https://doi.org/10.1016/S0031-9422(99)00110-7
  17. Strack, D., Engel, U., and Wray, V., Neobetanin: A new natural plant constituent. Phytochemistry, 26, 2399-2400 (1987) https://doi.org/10.1016/S0031-9422(00)84728-7
  18. Yoshikawa, M., Shimada, H., Nishida, N., Li, Y., Toguchida, I., Yamahara, J., and Matsuda, H., Antidiabetic principles of natural medicines. II. Aldose reductase and alpha-glucosidase inhibitors from Brazilian natural medicine, the leaves of Myrcia multiflora DC. (Myrtaceae): structures of myrciacitrins I and II and myrciaphenones A and B. Chem. Pharm. Bull., 46, 113-119 (1998) https://doi.org/10.1248/cpb.46.113