DOI QR코드

DOI QR Code

Environmental Assessment of the Shihwa Lake by using the Benthic Pollution Index

저서오염지수(BPI)를 이용한 시화호 환경평가

  • 이재학 (한국해양연구원 생태환경연구본부) ;
  • 박자양 (한국해양연구원 생태환경연구본부) ;
  • 이형곤 (한국해양연구원 생태환경연구본부) ;
  • 박흥식 (한국해양연구원 해양자원연구본부) ;
  • 김동성 (한국해양연구원 생태환경연구본부)
  • Published : 2003.06.30

Abstract

In order to assess the ecological changes induced by organic pollutants of the Shihwa Lake, BPI (Benthic Pollution Index) based on the benthic faunal community was employed. It was modified from Infaunal Trophic Index (ITI), and recommended as a pollution detecting method for the environmental assessment. The BPI values were calculated from the benthos data, which were collected for three terms: in 1980, before the Shihwa Lake was built up; in 1994-1997, which the Shihwa Lake was completely isolated from the outer seawater; in 1997-1999, after inflow of the outer seawater. Since the Shihwa Dike was constructed in February 1994, the pollution intensity of the lake had been increased from the narrow and inner part of the former Gyeonggi Bay and spread fast along the coast line of the Shihwa Lake. Then, in 1996 it showed the very high BPI levels all around the Lake. This serious polluted condition had been lasted till 1997, when the inflow of the seawater was begun. In 1998, from the nearest part of the Shihwa Gate, the BPI levels gradually became low in most area of the Lake, except its inner and narrow part. These greatly lowered BPI levels mean that the seawater inflow could be assumed to affect positively in the lake. Furthermore, BPI gave the same results from the other environmental assessment based on the abundance and the species richness of macrobenthic community. It shows that BPI could be useful as an effective method to assess the marine environment and evaluate the status of environmental conditions.

저서생물의 유기물 오염에 대한 반응 정도를 간접적으로 나타내주는 저서오염지수(Benthic Pollution Index)를 근거로 시화지구 폐쇄해역의 환경오염 및 생태계 변화추이를 파악하고, 그 결과를 동일시기의 저서생물 군집의 평균서식밀도 및 출현종 변화와의 비교분석을 통해 효율성을 타진함으로써, BPI 산출비교 방식을 향후 환경감시에 유용하게 사용할 수 있는 오염도 감식방법으로의 하나로 제안하였다. 시화 부근해역의 폐쇄 이전인 1980년 외해수화의 접촉이 원활하던 시기와, 1994년 초 시화방조제의 마지막 물막이 공사 이후 해역이 완전 폐쇄되었던 시기, 그리고 1997년 7월부터 1999년 하반기까지 방류량의 연차별 차등을 두고 정기적으로 외해수의 유통이 재개된 시기 등 세 시기별 생태계 변화추이를 동일지점에서 수행된 저서 생태계 조사결과를 바탕으로 조사정점별 BPI등급을 이용하여 시 공간적으로 비교 고찰하였다. 1994년 2월의 시화방조제 완공이후 육지에서 가까운 좁은 내만 지역으로부터 급격히 악화되기 시작한 폐쇄해역의 생태환경은, 1995년에는 시화호의 중심부만을 제외한 폐쇄해역 주변부를 따라 오염이 진행되었고, 1996년으로 접어들자 폐쇄해역의 전역에 걸쳐 매우 낮은 BPI지수가 나타남으로써 심각한 오염 확산이 확인되었다. 배수갑문의 시험개방 직후인 1997년에는 여전히 매우 높은 오염도를 보였고, 증가된 방류량과 더불어 상시개방이 시행된 시기 이후인 1998년에 들어 방조제 부근으로부터 BPI지수에 점진적인 변화가 나타나기 시작했다. 1999년으로 접어들면서 내만 깊숙한 지역을 제외하고 방조제 가까운 방향의 폐쇄해역에서 BPI등급이 낮아지고 있는 것이 확인됨으로써 외해수 유출입이 긍정적인 영향을 끼친 것으로 추측된다. 한편, 각 시기의 저서생물 군집분석결과, 매우 유사한 경향을 나타냄으로써 저서오염지수(BPI) 산출방식과 유의한 결론이 도출되었으며, 이는 환경평가 방법의 하나로 저서오염지수(BPI)산출방식의 효율성을 뒷받침 해주는 것으로 평가된다.

Keywords

References

  1. 한국수자원공사. 2002. 시화호 간석지 생태환경 보전방안 수립. BSPI 32800-1458-3. 187 p.
  2. 한국해양연구소. 1995. 해양 저서생물상에 의한 환경평가(해양환경관리기술보고서). 환경부, 과학기술처. 339 p.
  3. 한국해양연구소. 1997. 시화호의 환경변화조사 및 보전대책 수립에 관한 연구. BSPN 96325-985-4. 169 p.
  4. 한국해양연구소. 1998. 시화호의 환경변화조사 및 보전대책 수립에 관한 연구. BSPE 97610-00-1035-4. 230 p.
  5. 한국해양연구소. 1999. 시화호의 환경변화조사 및 보전대책 수립에 관한 연구. BSPE 98705-01-34. 363 p.
  6. 한국해양연구소. 2000. 시화호의 환경변화조사 및 보전대책 수립에 관한 연구. BSPE 99751-00-1202-4. 251 p.
  7. Frontier, S. 1985. Diversity and structure in aquatic ecosystems. Oceanogr. Mar. Biol. Ann. Rev., 23, 253-312.
  8. Gosner, K.L. 1971. Guide to Identification of Marine and Estuarine Invertebrates. Wiley-Interscience, a Division of John Wiley & Sohn, Inc. 693 p.
  9. Gray, J.S. 1974. Animal-sediment relationship. Oceanogr. Mar. Biol. Ann. Rev., 12, 223-261.
  10. Gray, J.S. 1977. The stability of benthic ecosystem. Helgolander wiss. Meeresunters, 30, 427-444. https://doi.org/10.1007/BF02207852
  11. Gray, J.S. 1979. Pollution-induced changes in populations. Phil. Trans. R. Soc. Lond. B., 286, 545-561. https://doi.org/10.1098/rstb.1979.0045
  12. Gray, J.S. 1981. Detecting pollution induced changes in communities using the log-normal distribution of individuals among species. Mar. Pollut. Bull., 12(5), 173-176. https://doi.org/10.1016/0025-326X(81)90230-7
  13. Gray, J.S. and F.B. Mirza. 1979. A Possible Method for the Detection of Pollution-Induced Disturbance on Marine Benthic Communities. Mar. Pollut. Bull., 10(5), 142-146. https://doi.org/10.1016/0025-326X(79)90082-1
  14. Gray, J.S. and T.H. Pearson. 1982. Objective Selection of Sensitive Species Indicative of Pollution-Induced Change in Benthic Communities. I. Comparative Methodology. Mar. Ecol. Prog. Ser., 9, 111-119. https://doi.org/10.3354/meps009111
  15. Hartley, J.P. 1982. Methods for monitoring off-shore macrobenthos. Mar. Pollut. Bull., 13, 150-154. https://doi.org/10.1016/0025-326X(82)90084-4
  16. Lee, J.H., B.S. Koh, and H.S. Park. 1997. Marine Environmental Assessment based on the Benthic Macroinfaunal Composition in the Coastal Area of Inchon, Korea. J. Korean Fish. Soc., 30(5), 771-781.
  17. Pearson, T.H. and R. Rosenberg. 1978. Macrobenthic succession in relation to organic enrichment and pollution of the marine environment. Oceanogr. Mar. Biol. Rev., 16, 229-311.
  18. Warwick, R.M. 1986. A new method for detecting pollution effects on marine macrobenthic communities. Mar. Biol., 92, 557-562. https://doi.org/10.1007/BF00392515
  19. Warwick, R.M. and K.R. Clarke. 1994. Relearning the ABC: taxonomic changes and abundance/biomass relationships in disturbed benthic communities. Mar. Biol., 118, 739-744. https://doi.org/10.1007/BF00347523
  20. Warwick, R.M., T.H. Pearson, and Ruswahyuni. 1987. Detection of pollution effects on marine macrobenthos: further evaluation of the species abundance/biomass method. Mar. Biol., 95, 193-200. https://doi.org/10.1007/BF00409005
  21. Word, J.Q. 1978. The infaunal trophic index. p. 19-39. In: Coastal Water Research Project. Annual Report.

Cited by

  1. Spatial Characteristics of the Macrobenthos Community Near the Nakdong River Estuary, on the Southeast Coast of Korea vol.27, pp.2, 2005, https://doi.org/10.4217/OPR.2005.27.2.135
  2. Resurrection of the genusNectoneanthesImajima, 1972 (Nereididae: Polychaeta), with redescription ofNectoneanthes oxypoda(Marenzeller, 1879) and description of a new species, comparing them toNeanthes succinea(Leuckart, 1847) vol.47, pp.1-2, 2013, https://doi.org/10.1080/00222933.2012.743609
  3. Seasonal variations in the community structures of macrobenthic fauna and their health status in an estuarine bay, Gwangyang Bay in Korea vol.52, pp.3, 2017, https://doi.org/10.1007/s12601-017-0038-z
  4. Threshold value of Benthic Pollution Index (BPI) for a muddy healthy benthic faunal community and its application to Jinhae Bay in the southern coast of Korea vol.49, pp.3, 2014, https://doi.org/10.1007/s12601-014-0030-9
  5. Environmental quality of Korean coasts as determined by modified Shannon–Wiener evenness proportion vol.170, pp.1-4, 2010, https://doi.org/10.1007/s10661-009-1222-0
  6. Structural changes in macrozoobenthic communities due to summer hypoxia in Gamak Bay, Korea vol.47, pp.1, 2012, https://doi.org/10.1007/s12601-012-0003-9
  7. Polychaete Community Structure from Inshore and Offshore of Lake Shihwa (Korea) in March, 2008 vol.45, pp.1, 2012, https://doi.org/10.5657/KFAS.2012.0056
  8. Toxicological impact assessment of heavy metal contamination on macrobenthic communities in southern coastal sediments of Korea vol.73, pp.1, 2013, https://doi.org/10.1016/j.marpolbul.2013.05.037
  9. An ecological study on subtidal macrobenthos inside and outside of Saemangeum dike vol.28, pp.4, 2014, https://doi.org/10.13047/KJEE.2014.28.4.442
  10. The macrofaunal communities in the shallow subtidal areas for the first 3years after the Hebei Spirit oil spill vol.82, pp.1-2, 2014, https://doi.org/10.1016/j.marpolbul.2014.03.008
  11. The Community Structure of Macrozoobenthos and Its Temporal Change on the Gapo Artificial Tidal Flat in Masan Bay, Korea vol.03, pp.04, 2013, https://doi.org/10.4236/ojms.2013.34022
  12. Environmental and ecological effects of Lake Shihwa reclamation project in South Korea: A review vol.102, 2014, https://doi.org/10.1016/j.ocecoaman.2013.12.018
  13. Hard science is essential to restoring soft-sediment intertidal habitats in burgeoning East Asia vol.168, 2017, https://doi.org/10.1016/j.chemosphere.2016.10.136
  14. A Knowledge-based Approach for the Estimation of Effective Sampling Station Frequencies in Benthic Ecological Assessments vol.16, pp.3, 2011, https://doi.org/10.7850/jkso.2011.16.3.147
  15. The Community Structure of Macrozoobenthos and Its Spatial Distribution in the Subtidal Region off the Namhaedo Island, South Coast of Korea vol.21, pp.1, 2016, https://doi.org/10.7850/jkso.2016.21.1.11
  16. Macrozoobenthos of Korean tidal flats: A review on species assemblages and distribution vol.102, 2014, https://doi.org/10.1016/j.ocecoaman.2014.07.019
  17. Hypoxia in Korean Coastal Waters: A Case Study of the Natural Jinhae Bay and Artificial Shihwa Bay vol.5, pp.2296-7745, 2018, https://doi.org/10.3389/fmars.2018.00070
  18. Coastal Ecosystem Health Assessment in Korea: Busan Case Study pp.2005-7172, 2019, https://doi.org/10.1007/s12601-019-0003-0