Global Analysis of Estrogen-Regulated Genes in Mouse Uterus using cDNA Microarray and Laser Capture Microdissection

cDNA Microarray와 Laser Capture Microdissection을 이용한 생쥐 자궁에서 Estrogen에 의해 조절되는 유전자 발현에 관한 분석

  • Hong, Seok-Ho (Department of Life Science, College of Natural Sciences, Hanyang University) ;
  • Nah, Hee-Young (Department of Obstetrics and Gynecology, College of Medicine, Ulsan University, Asan Medical Center) ;
  • Lee, Ji-Yoon (Department of Obstetrics and Gynecology, College of Medicine, Ulsan University, Asan Medical Center) ;
  • Kim, Chung-Hoon (Department of Obstetrics and Gynecology, College of Medicine, Ulsan University, Asan Medical Center) ;
  • Kim, Moon-Kyoo (Department of Life Science, College of Natural Sciences, Hanyang University)
  • 홍석호 (한양대학교 자연과학대학 생명과학과) ;
  • 나희영 (울산대학교 의과대학 서울아산병원 산부인과) ;
  • 이지윤 (울산대학교 의과대학 서울아산병원 산부인과) ;
  • 김정훈 (울산대학교 의과대학 서울아산병원 산부인과) ;
  • 김문규 (한양대학교 자연과학대학 생명과학과)
  • Published : 2003.06.30

Abstract

연구목적: Estrogen은 포유류의 생리주기와 착상과정에서 중요한 조절인자로 작용한다. 본 연구에서는 난소 절제된 생쥐의 자궁에서 estrogen에 의해 직접 또는 간접적으로 조절되어 발현하는 유전자를 분석하고자 하였다. 연구재료 및 방법: 생후 8주된 생쥐의 양쪽 난소를 절제하고 14일 동안 회복기간이 지난 후, estrogen (300 ng/mouse)을 피하로 주사하였다. Estrogen 주사 후 6, 12시간째 자궁을 적출하여 cDNA microarray와 laser capture microdissection (LCM) 기술을 이용하여 estrogen에 의해 조절되는 유전자의 시공간적인 발현 양상을 조사하였다. 결 과: Estrogen 주사 후 6시간째에는 조사된 전체 유전자 가운데 0.9% (증가 22, 감소 49), 12시간째에는 8.4% (증가 351, 감소 287)에 해당되는 유전자가 두 배 이상 증가 혹은 감소하는 결과를 보였다. 또한 일부 증감된 유전자를 선택한 후 LCM 기술을 이용하여 시공간적인 발현양상을 확인한 결과 자궁내막상피세포에서만 estrogen에 의해 유전자의 발현이 증가되는 일부 유전자를 선별하였다. 결 론: 이상의 결과들을 종합해보면 1) estrogen에 의해 조절되는 유전자의 수나 증감의 정도는 12시간 이후에 더 많고, 크게 조절되며, 2) 유전자의 조절부위가 자궁의 특이적인 세포층에서 시공간적으로 조절됨을 의미한다. 이러한 유전자의 정보는 생리주기 또는 착상과정의 분자생물학적 기작을 이해하는 데 도움이 될 것이다.

Keywords

References

  1. Green S, Walter P, Kumar V. Human oestrogen receptor cDNA: sequence, expression and homology to v-erb-A. Nature 1986; 320: 134-9 https://doi.org/10.1038/320134a0
  2. Kuiper GG, Enmark E, Pelto-Huikko M, Nilsson S, Gustafsson JA. Cloning of a novel receptor expressed in rat prostate and ovary. Proc Natl Acad Sci 1996; 93: 5925-30 https://doi.org/10.1073/pnas.93.12.5925
  3. Kousteni S, Bellido T, Plotkin LI. Nongenotropic, sex-nonspecific signaling through the estrogen or androgen receptors: dissociation from transcriptional activity. Cell 2001; 104: 719-30
  4. Angel N, Ana BR, Ouahiba L, Marjorie M, Esther F, Bernat S. Nongenomic actions of estrogens and xenoestrogens by binding at a plasma membrane receptor unrelated to estrogen receptor $\alpha$ and estrogen receptor $\beta$. Proc Natl Acad Sci 2000; 97: 11603-8. https://doi.org/10.1073/pnas.97.21.11603
  5. Ralf L, Martin W. Nongenomic actions of steroid hormones. Mol cell Biol 2003; 4: 46-56
  6. McMaster MT, Teng CT, Dey SK, Andre GK. Lactoferrin in the mouse uterus: Analysis of the preimplantation period and regulation by ovarian steroids. Mol Endo 1992; 5: 101-11
  7. Wang X, Das SK, Damm D, Klagsbrun M, Abraham JA, Dey SK. Differential regulation of heparin-binding epidermal growth factor-like growth factor in the adult ovariectomized mouse uterus by progesterone and estrogen. Endocrinol 1994; 135: 1264-71 https://doi.org/10.1210/en.135.3.1264
  8. Das SK, Tsukamura H, Paria BC, Andrews GK, Dey SK. Differential regulation of epidermal growth factor receptor (EGF-R) gene and regulation of EGF-R bioactivity by progesterone and estrogen in the adult mouse uterus. Endocrinol 1994; 134: 971-81 https://doi.org/10.1210/en.134.2.971
  9. Diane MK, Sylvia CH, Kenneth SK, Richard PD. Activation of a uterine insulin-like growth factor I signaling pathway by clinical and environmental estrogens: requirement of estrogen receptor-$alpha$. Endocrinol 2000; 141: 3430-9 https://doi.org/10.1210/en.141.9.3430
  10. Brannvall K, Korhonen L, Lindholm D. Estrogenreceptor-dependent regulation of neural stem cell proliferation and differentiation. Mol Cell Neurosci 2002; 21: 512-20 https://doi.org/10.1006/mcne.2002.1194
  11. Reese J, Das SK, Paria BC, Lim H, Song H, Matsumoto H, et al. Global gene expression analysis to identify molecular markers of uterine receptivity and embryo implantation. J Biol Chem 2001; 276: 44137-45 https://doi.org/10.1074/jbc.M107563200
  12. Cheon YP, Li Q, Xu X, Demayo FJ, Bagchi IC, Bagchi MK. A genomic approach to identify novel progesterone receptor regulated pathways in the uterus during implantation. Mol Endo 2002; 16: 2853-71 https://doi.org/10.1210/me.2002-0270
  13. Green AR, Edwards RE, Greaves P, White INH. Comparison of the effect of oestradiol, tamoxifen and raloxifene on nerve growth factor-$alpha$ expression in specific neonatal mouse uterine cell types using laser capture microdissection. J Mol Endo 2003; 30:1-11 https://doi.org/10.1677/jme.0.0300001
  14. Watanabe H, Suzuki A, Mizutani T, Khono S, Lubahn DB, Iguchi T. Genome-wide analysis of changes in early gene expression induced by estrogen. Genes to Cells 2002; 7: 497-507 https://doi.org/10.1046/j.1365-2443.2002.00535.x
  15. Das SK, Tan J, Johnson DC, Dey SK. Differential spatiotemporal regulation of lactoferrin and progesterone receptor genes in the mouse uterus by primary estrogen, catechol estrogen, and xenoestrogen. Endocrionol 1998; 139: 2905-15 https://doi.org/10.1210/en.139.6.2905
  16. Fischer JA, Muff R, Born W. Functional relevance of G-protein-coupled- receptor-associated proteins, exemplified by receptor-activity-modifying proteins (RAMPs). Biochem Soc Trans 2002; 30: 455-60 https://doi.org/10.1042/BST0300455
  17. Gangula PR, Wimalawansa SJ, Yallampalli C. Pregnancy and sex steroid hormones enhance circulating calcitonin gene-related peptide concentrations in rats. Hum Reprod 2000; 5: 949-53
  18. Sabbah M, Courilleau D, Mester J, Redeuilh G. Estrogen induction of the cyclin D1 promoter: involvement of a cAMP response-like element. Proc Natl Acad Sci 1999; 96: 11217-22 https://doi.org/10.1073/pnas.96.20.11217
  19. Bleckmann SC, Blendy JA, Rudolph D, Monahan AP, Schmid SG. Activating transcription factor 1 and CREB are important for cell survival during early mouse development. Mol Cell Biol 2002; 22: 1919-25 https://doi.org/10.1128/MCB.22.6.1919-1925.2002
  20. Song HJ, Poly G, Darwiche N, Lichti U, Kuroki T, Kartasova T. Mouse Sprr2 genes: A clustered family of genes showing differential expression in epithelial tissues. Genomics 1999; 55: 28-42 https://doi.org/10.1006/geno.1998.5607
  21. Fischer DF, Gibbs S, Putte P, Backendorf C. Interdependent transcription control elements regulate the expression of the SPRP2A gene during keratinocyte terminal differentiation. Mol Cell Biol 1996; 16: 5365-74 https://doi.org/10.1128/MCB.16.10.5365