DOI QR코드

DOI QR Code

The Biological Effects of β-Cyclodextrin on Antithrombotic Activity and Plasma Lipid Metabolism in Rats

흰쥐에서 혈액지질 대사 및 항혈전작용에 관한 베타사이클로덱스트린의 생물학적 효과

  • Park, B. S. (Major of Animal Life Science, Kangwon National University)
  • 박병성 (강원대학교 동물생명과학전공)
  • Published : 2003.04.30

Abstract

The effect of feeding a cyclic oligosaccharide, $\beta$-cyclodextrin($\beta$CD) on plasma cholesterol and triacylglyceride concentrations and on antithrombotic activity were investigated in rats fed a control chow diet, or one either high in cholesterol or in saturated fat. The bleeding time of $\beta$CD-fed groups was significantly prolonged by 293%, 157% and 218% in normal, high cholesterol and high fat diet fed groups, respectively, as compared to the control group(p<0.05). The whole blood clotting time was significantly increased by 202%, 168% and 211% in normal, high cholesterol and high fat diet fed groups as compared to control group, respectively(p<0.05). The $\beta$CD diet caused a marked decrease in plasma total lipid(TL), triacylglyceride(TAG), total cholesterol (TC) and low density lipoprotein- cholesterol (LDL-C) concentrations. The plasma TL concentration was significantly decreased by 70%, 82% and 87% in normal, high cholesterol and high fat diet fed groups as compared to the control group, respectively(p<0.05). The plasma TAG concentration was significantly decreased by 89%, 43% and 59% in normal, high cholesterol and high fat diet fed groups, respectively, as compared to the control group(p<0.05). The plasma TC concentration was significantly decreased by 28%, 62% and 36% in normal, high cholesterol and high fat diet fed groups, respectively, as compared to the control group(p<0.05). The LDL-C concentration was significantly decreased by 39%, 54% and 25% in normal, high cholesterol and high fat diet fed groups as compared to control group, respectively(p<0.05). The plasma total bile acids contents of $\beta$CD group was significantly increased by 66%, 95% and 97% in normal, high cholesterol and high fat diet fed groups as compared to control group, respectively(p<0.05). The hepatic HMG-CoA reductase activity was significantly lowered by 41% in the $\beta$CD-fed group compared to normal diet fed rats(p<0.05). The fecal steroid excretions of the $\beta$CD groups was significantly increased by 167% in normal diet fed rats(p<0.05). These results suggest that the $\beta$CD has a biological active function on antithrombotic activity and is hypolipidemic, hypotriglyceridemic and hypocholesterolimic agents. These are all effects that can help to prevent obesity and coronary heart disease in humans.

일반사료, 고콜레스테롤사료 또는 포화지방함량이 높은 사료를 섭취한 흰쥐에서 항혈전작용과 혈액중성지방 및 콜레스테롤 수준에 관한 $\beta$-cyclodextrin($\beta$CD)의 급여효과를 조사하였다. 출혈시간은 일반사료, 고콜레스테롤 및 고지방사료 섭취군 모두에서 $\beta$CD 첨가구가 대조구에 비해서 각각 293%, 157% 및 218% 까지 유의적으로 연장되었다(p<0.05). 전혈응고시간은 일반사료, 고콜레스테롤 및 고지방사료섭취군에서 $\beta$CD 첨가구가 대조구와 비교할때 각각 202%, 168% 및 211%까지 유의적으로 높았다(p<0.05). $\beta$CD 첨가사료는 흰쥐 혈액내 총지질, 중성지방, 총콜레스테롤 및 저밀도지질단백질 콜레스테롤 함량을 현저하게 낮추는 원인이 되었다. 혈액내 총지질 함량은 일반사료, 고콜레스테롤 및 고지방사료 섭취군에서 $\beta$CD첨가구가 대조구에 비해서 각각 70%, 82% 및 87%까지 유의적으로 낮아졌다(p<0.05). 혈액내 중성지방함량은 일반사료, 고콜레스테롤 및 고지방사료 섭취군에서 $\beta$CD 첨가구가 대조구와 비교할 때 각각 89%, 43% 및 59%까지 유의적인 감소를 나타냈다(p<0.05). 혈액내 총콜레스테롤 함량은 일반사료, 고콜레스테롤 및 고지방사료 섭취군에서 $\beta$CD 첨가구가 대조구에 비해서 각각 28%, 62% 및 36%까지 유의적으로 낮아졌다(p<0.05). 혈액내 저밀도 지질단백질 콜레스테롤 함량은 일반사료, 고콜레스테롤 및 고지방사료섭취군에서 $\beta$CD 첨가구가 대조구에 비해서 각각 39%, 54% 및 25%까지 유의적인 감소를 나타냈다(p<0.05). 혈액내 총담즙산 함량은 일반사료, 고콜레스테롤 및 고지방사료섭취군에서 $\beta$CD 첨가구가 대조구에 비해서 각각 66%, 95% 및 97% 까지 유의적인 증가를 보였다(p<0.05). 일반사료 섭취군에서 $\beta$CD 첨가구의 HMG-CoA reductase 활성도는 대조구와 비교할 때 41%까지 유의적으로 낮아졌으며 분을 통한 스테로이드의 배설량은 167%까지 유의적인 증가를 나타냈다(p< 0.05). 이 결과는 $\beta$CD가 사람의 심장혈관계질환과 비만을 예방하는데 도움이 될 수 있는 혈액내 지질, 중성지방 및 콜레스테롤의 감소효과 그리고 항혈전작용에 관한 생리활성 기능을 갖는다는 것을 시사해 주고 있다.

Keywords

References

  1. Abadie, C., Hug, M., Kubli, C. and Gains, N. 1994. Effect of cyclodextrins and undigested starch on the loss of chenodeoxycholate in the faeces. Biochem. J. 299:725-730.
  2. American Institute Nutrition. 1977. Report of the American Institute of Nutrition. Ad committee on standards for nutritional studies. J. Nutr. 107: 1349-1348.
  3. Antenucci, R. N. and Palmer, J. K. 1984. Enzy- matic degradation of $\alpha$-and $\beta$-cyclodextrin by bacteroides of the human colon. J. Agric. Food Chem. 32:1361-1321. https://doi.org/10.1021/jf00126a036
  4. Balasubramaniam, S., Goldstein, J. L., Faust, J. R., Brunschede, G. Y. and Brown, M. S. 1977. Lipoprotein-mediated regulation of 3-hydroxy-3- methylglutaryl coenzyme A reductase activity and cholesterol ester metabolism in the adrenal gland of the rat. J. Biol. Chem. 252:1771-1782.
  5. Catala, I., Juste, C., Boehler, N., Ferezou, J., Andre, M., Riottot, M., Cutton, C., Lafront, H., Bornet, F. and Corring, T. 2000. cholesterol crystallization in gall-bladder bile of pigs given cholesterol-$\beta$-cyclodextrin-enriched diets with either casein or soybean concentrate as protein sources. Brit. J. Nutr. 83:411-420.
  6. Chen, I. S., Subrananiam, S., Vahoumy, G. V., Cassidy, M. M., Ikeda, I. and Kritchersky, D. 1989. A comparison of the digestion and absorption of cocoa butter and palm kernel oil and their effects of cholesterol absorption in rats. J. Nutr. 119:1569-1573.
  7. Einarsson, K., Ericsson, S., Ewerth, S., Reihner, E., Rudling, M., Stahlberg, D. and Angelin, B. 1991. Bile acid sequestrants:mechanisms of action on bile acid and cholesterol metabolism. Eur. J. Clin. Pharmacol. 40[suppl 1]:553-558.
  8. Favier, M. -L., Remesy, C., Moundras, C. and Demigne, C. 1995. Effect of cyclodextrin on plasma lipids and cholesterol metabolism in the rat. Metabolism. 44:200-206.
  9. Ferezou, J., Riottot, M., Serougne, C., Cohen- Solal, C., Catala, I., Aliguier, C., Parquet, M., Juste, C., Lafont, H., Mathe, D., Corring, T. and Lutton, C. 1997. Hypocholesterolemic action of $\beta$- cyclodextrin and its effects on cholesterol metabolism in pigs fed a cholesterol-enriched diet. J. Lipid Res. 38 : 86-600.
  10. Flourie, B., Molis, C. A., Chour, L., Dupas, H., Hatat, C. and Rambaud, J. L. 1993. Fate of $\beta$- cyclodextrin in the human intestine. J. Nutr. 123: 676-680. https://doi.org/10.1093/jn/123.4.676
  11. Frings, C. S. and Dunn, R. T. 1970. A colorimetric method for determination of total serum lipids based on the sulfo-phospho-vanillin reaction. Am. J. Clin. Path. 50:89-91.
  12. Frijlink, H. W., Eissens, A. C., Hefting, N. R., Poelstra, K., Lerk, C. F. and Meijer, D. K. F. 1991. The effect of parenterally administered cyclodextrin on cholesterol levels in the rat. Phanm. Res. 8:9-16.
  13. Fukushima, M., Akiba, S. and Nakano, M. 1996. Comparative hypocholesterolemic effect of six vegetable oils, in cholesterol-fed rat. Lipids. 31: 415-419.
  14. Grundy, S. M., Ahrens, E. H. Jr. and Miettinen, T. A. 1965. Quantitative isolation and gas-liquid chromatographic analysis of total fecal bile acid. J. Lipid Res. 6:397-410.
  15. Grundy, S. M., Ahrens, E. H. Jr. and Salen, G. 1971. Interruption of the enterohepatic circulation of bile acids in man; Comparative effects of cholesterylamine and ileal exclusion on cholesterol metabolism. J. Lab. Clin. Med. 78:94-121.
  16. Han, Y. N., Bail, S. K., Kim, T. H. and Han, B. H. 1987. Antithrombotic activiies of saponins from ilex pubescens. Arch. Pharm. Res. 10:115-120. https://doi.org/10.1007/BF02857777
  17. Hashimoto, H. 1991. Preparation, structure, Property and application of branched cyclodextrins. In: New trends in cyclodextrins and derivatives (Duch${\acute{e}}$ne, D) PP. 97-156. Editions de Sant${\acute{e}}$ Paris. France.
  18. Homstra, G., Christ-Hazelhof, E., Haddenman, E., Hoor, F. and Nugteren, D. H. 1981. Fish oil feeding lowers thromboxane and prostacylin production by rat platelets and aorta and does not result in the formation of prostaglandin $I_3$. Prostaglandins. 21:727-739. https://doi.org/10.1016/0090-6980(81)90230-6
  19. Hostmark, A. T., Lystad, E., Haung, A. and Eilertsen, E. 1989. Plasma lipids, lipoproteins, and fecal excretion of neutial sterols and bile acids in rats fed various and high diets or a low fat/high sucrose diet. J. Nutr. 119:356-363.
  20. uste, C., Catala, I., Riottot, M., Andre, M., Parquet, M., Lyan, B., Bequet, F., Ferezou-Viala, J., Serougne, C., Domingo, N., Lutton, C., Lafont, H. and Corring, T. 1997. Inducing cholesterol precipitation from pig bile with $\beta$-eyclodextrin and cholesterol dietary supplementation. J. Hepatology. 26:711-721.
  21. Lowry, O. H., Rosebrough, N. J., Farr, A. L. and Rorndall, R. J. 1951. Protein measurement with the folin phenal reagent. J. Biol. Chem. 193:265-275.
  22. McDonald, B. E., Gerrard, J. M., Bruce, V. M. and Comer, E. J. 1989. Comparison of the effect of canola oil and sunflower oil on plasma lipids and lipoproteins and on in vivo thromboxane $A_2$ and prostacyclin production in healthy young men. Am. J. Clin. Nutr. 50:1382-1388. https://doi.org/10.1093/ajcn/50.6.1382
  23. Mclennan, P. L., Abeywardena, M. Y. and Charnock, J. S. 1990. Rerersal of the arrhythmogenic effects of long-term saturated fatty acid intake by dietary n-3 and n-6 polyunsaturated fattyacids. Am. J. Clin. Nutr. 51:53-58. https://doi.org/10.1093/ajcn/51.1.53
  24. Miettinen, T. T., Ahrens, E. H. and Grundy, S. M. 1965. Quantitative isolation and gas liquid chromatographic analysis of total dietary and fecal neutral steroids. J. Lipid Res. 6:411-424.
  25. Moncada, S. and Vane, J. R. 1979. Arachidonic acid metabolites and the interactions between platelets and blood-vessel walls. New Engl. J. Med. 300:1142-1147. https://doi.org/10.1056/NEJM197905173002006
  26. Myant, N. B. and Eder, H. A. 1961. The effect of bilary brainge upon the synthesis of cholesterol in the liver. J. Lipid Res. 2:363-368.
  27. Nagamoto, S. 1985. Cyclodextrins-expanding the development of their functions and applications. Chem. Economy Eng. Rev. 17 : 28-34.
  28. Newsweek. 1992. Betting on a guilt-free egg. Newsweek. April : 6.
  29. Oakenfull, D. G., Pearce, R. J. and Sidhu, G. S. 1991. Low-cholesterol dairy products. Am. J. Dairy Tech. November: 110-112.
  30. Olivier, P., Verwaerde, F. and Hedges, A. R. 1991. Subchronic toxicity of orally administered beta-cyclodextrin in rats. J. Am. Coli. Toxicol. 10:407-418. https://doi.org/10.3109/10915819109078639
  31. Paul, P., Remesha, C. S. and Ganguly, J. 1979. On the mechanism of hypo- cholestelolenic effects of polyunsaturated lipids. Adv. Lipid Res. 17: 155-171.
  32. Quin, D. E. and Haslam, J. M. 1979. The effects of catabolite depression on the accumulation of steryl esters and the activity of $\beta$-hydro-xymethylutaryl-CoA reductase activity in saccharomyces cerevisiae. J. Gen. Microbiology. 111:343-351. https://doi.org/10.1099/00221287-111-2-343
  33. Qureshi, A. A., Abuirmeileh, N., Burger, W. C., Din, Z. Z. and Elson, C. E. 1983. Effect of AMO 1681 on cholesterol and fatty acid metabolism in chicken and rats. Atherosclerosis. 46:202-216.
  34. Qureshi, A. A., Abuirmeileh, N., Din, Z. Z., Ahmad, Y., Burger, W. C. and Elson, C. E. 1983. Suppression of cholesterol systhesis and reduction of LDL cholesterol by dietary ginseng and its fractions in chichen liver. Atherosclerosis. 48:81-94. https://doi.org/10.1016/0021-9150(83)90019-9
  35. Reaven, G. M. 1993. Role of insuline resistance in human disease (syndrome); an expanded definition. Annu. Rev. Med. 44:121-131. https://doi.org/10.1146/annurev.me.44.020193.001005
  36. Riottot, M., Olivier, P., Helet, A., Caboche, J-J., Parquet, M., Khallou, J. and Lutton, C. 1993. Hypolipidemic effects of $\beta$ -cyclodextrin in the hamster and in the genetically hypercholesterolemic rico rat. Lipids. 28:181-188.
  37. Sanders, T. A. B. and Roshanai, F. 1983. The influence of different types of $\omega$3 polyunsaturated fatty acids on blood lipids and platelet in healthy volunteers. Clin. Sci. 64:91-99.
  38. Saenger, W. 1994. Structural aspects of cyclodextrins and their inclusion complexex. Incl. Compounds. 2:231-233.
  39. Suzuki, M. and Sato, A. 1985. Nutritional significance of cyclodextrins: Indigestibility and hypolipidemic effects of $\alpha$-cyclodextrin, J. Nutr. Sci. Vitaminol. 31 : 209-223.
  40. Thorngren, M. and Gustafson, A. 1981. Effects of 11-week increase in dietary eicosapentaenoic acid on bleeding time, lipids and platelet aggregation. Lancet. II : 1190-1193
  41. Tkac, I. 1997. The severity of coronary atherosclerosis in type, 2 diabetes mellitus is related to the number of circulating triacylglyceide-rich lipoprotein particles. Arteriosclen. Thromb. Vase. BioI. 17:3633-3638.
  42. Yen, G. -L. and Chen, C. -J. 2000. Effects of fractionation and the refining process of lard on cholesterol remoral by $\beta$-cyclodextrin. J. Food Sci. 65:622-624.

Cited by

  1. The Effect of Antifat Diets with β-Cyclodextrin on the Weight Loss in Obese Korean Women vol.33, pp.5, 2004, https://doi.org/10.3746/jkfn.2004.33.5.832