DOI QR코드

DOI QR Code

The Effect of Radiative Heat Flux on Dynamic Extinction in Metalized Solid Propellants

복사열전달이 고체 추진제의 동적소화에 미치는 영향

  • Published : 2003.03.01

Abstract

A numerical calculation was conducted to estimate and to elucidate the role of the radiative heat flux from metal particles(Al, $Al_2O_3$) on the dynamic extinction of solid propellant rocket where the rapid depressurization took place. Anon-linear flame modeling implemented by the residence time modeling for metalized propellant was adopted to evaluate conductive heat flux to the propellant surface. The radiative heat feed back was calculated with the aid of a modified comvustion-flow model as well. The calculation results with the propellant of AP:Al:CTPB=76:10:14 had revealed that the radiative heat flux is approximately 5~6% of total flux at the critical depressurization rate regardless of chamber geometry (open or confined chamber). It was also found that the dynamic extinction in open geometry could be predicted at the depressurization rate about 45% larger with radiative heat feedback than without radiation. Thus, it should be claimed that even a small amount of radiative flux 5~6% could produce a big error in predicting the critical depressurization rate of the metalized propellant combustion.

고체 추진제의 소화를 위한 연소실 압력 강하시 금속입자들에 의한 복사열전달에 동적소화에 미치는 영향을 알아보았다. AP:Binder의 화학반응으로 발생하는 전도열 플럭스를 구하기 위해 화염모델을 사용하였으며, 금속입자들에 복사열 플럭스를 구하기 위해 연소흐름 모델을 사용하였다. 연소실은 크기가 무한대인 경우와 노즐에 의해 제한된 형태 두 가지를 선택하여 계산을 수행하였다. 계산에 사용된 추진제 조성을 AP:Al:CTPB=76:10:14이며 최종압력 이후, 총 열 플럭스 중 복사열 플럭스가 차지하는 비중은 5~6%정도로 나타났다. 연소실 크기가 무한대인 경우, 복사열전달을 고려한 경우의 임계 압력강하율이 복하열을 고려하지 않은 경우보다 45% 크게 나타났다. 이는 복사열전달이 동적소화에 큰 영향을 미치는 것을 보여주는 것이다.

Keywords

References

  1. C. C. Ciepluch, Effect of Rapid Pressure decay on Solid Propellant Combustion, ARS Journal, Vol. 31, 1961, pp.1112-1122 https://doi.org/10.2514/8.5727
  2. H. Krier, J. S. T'ien, W. A. Sirignano, and M. Summerfield, "Nonsteady Burning Phenomena of Solid Propellants: Theory and Experiments", AIAA Journal, Vol. 6, No.2, 1968, pp.278-285 . https://doi.org/10.2514/3.4490
  3. K. K. Kuo, and J. P. Gore, Transient Burning of Solid Propellants, Chap. 11, Vol. 90, AIAA, New York, 1984.
  4. C. L. Merkle, S. L. Turk and M. Summerfield, Extinguishment of Solid Propellants by DepressurizationL Effects of Propellant Parameters, AIAA Paper 69-176, 1969.
  5. L. De Luca, "Theory of Nonsteady Burning and Combustion Stabillity of Solid Propellants by Flame Models", Nonsteady Burning and Combustion Stability of Solid Propellants, edited by L. De Luca, E. W. Price, and M. Summerfield, Vol. 143, Progress in Astronautics and Aeronautics, AIAA, Chap. 14, 1992.
  6. L. Galfetti, F. Turrini and L. DeLuca, Modeling of Transient Combustion in Solid Rocket Motors,116th Int. Sym. on Space Technology and Science, 1988.
  7. M. Q. Brewster and D. L. Parry, "Radiative Heat Feedback in Alumonized Solid Propellant Combustion", Journal of Thermophysics, Vol. 2, No.2, 1988, pp.123-130. https://doi.org/10.2514/3.75
  8. K. C. Tang and M. Q. Brewster, "Numercal Analysis of Radiative Heat Transfer in an Aluminum Distributed Combustion Region", Numerical Heat Trasfer, Part A, Vol. 22, 1992, pp.323-342. https://doi.org/10.1080/10407789208944771
  9. G. R. Nickerson, D. E. Coats, R. W. Hermsen, and L. T. Lamberty, AFRPL TR-83-Q36, 1984.
  10. A. Ishihara, M. Q. Brewster, T. A. Sheridan, and H. Krier, "TheInfluence of Radiative Heat Feedback on Burning Rate in Aluminized Propellants", Combustion and Flame, Vol. 84, 1991, pp.141-153. https://doi.org/10.1016/0010-2180(91)90043-B
  11. M. A. Zebrowski and M. Q. Brewster, "Theory of Unsteady Combustion of Solids: Investigation of Quasisteady Assumption", Journal of Propulsion and Power, Vol. 12, No.3, 1996, pp.564-573. https://doi.org/10.2514/3.24070
  12. C. Zanotti, A. Volpi, M. Bianchessi, L. DeLuca, Measuring Thermodynamic Properties of Burning Propellants, Nonsteady Burinig and Combustion Stability of Solid Propellants, edited by L. De Luca, E. W. Price, and M. Summerfield, Vol. 143, Progress in Astronautics and Aeronautics, AIAA, Chap. 5, 1992.
  13. L. Galfetti, G. Riva, and C. Bruno, "Numerical Computations of Solid-Propellant Nonsteady Burning in Open or Confined Volumes", Nonsteady Burning and Combustion Stability of Solid Propellants, edited by L. De Luca, E. W. Price, and M. Summerfield, Vol. 143, Progress in Astronautics and Aeronautics, AIAA, Chap. 16, 1992.
  14. 정호걸,이창진, "압력상승이 있는 고체 추진제 비정상 연소에서 복사 복사 열전달 해석," 항공우주학회지, 제29권, 제2호, 2001, pp.94-100.