DOI QR코드

DOI QR Code

Structural Design and Experimental Investigation of A Medium Scale Composite Wind Turbine Blade Considering Fatigue Life

피로 수명을 고려한 중형 복합재 풍력터빈 블레이드의 구조설계 및 실험 평가

  • Published : 2003.04.01

Abstract

In this study, the various load cases by specified by the IEC61400-1 international specification and GL Regulations for the wind energy conversion system were considered, and a specific composite structure configuration which can effectively endure various loads was proposed. In order to evaluate the structure, the structural analysis for the composite wind turbine blade was performed using the finite element method(FEM). In the structural design, the acceptable configuration of blade structure was determined through the parametric studies, and the most dominant design parameters were confirmed. In the stress analysis using the FEM, it was confirmed that the blade structure was safe and stable for all the considerd load cases. Moreover the safety of the blade root joint with insert bolts, newly devised in this study, was checked against the design loads and also the fatigue loads. The fatigue life for operating more than 20 years was estimated by using the well-known S-N linear damage rule, the load spectrum and Spera's empirical equations. The full-scale static test was performed under the simulated aerodynamic loads. from the experimental results, it was found that the designed blade had the structural integrity. Furthermore the measured results were agreed with the analytical results such as deflections, strains, the mass and the radial center of gravity. The studied blade was successfully certified by an international institute, GL, of Germany.

본 연구는 풍력발전 시스템에 관련된 IEC61400-1 국제규격 및 GL규격에 정의된 다양한 하중조건을 고려하였고, 이러한 하중들을 효과적으로 견딜 수 있는 특별한 복합재 구조형상을 제안하였다. 복합재 풍력터빈 블레이드 주고에 대한 평가를 위해 유한요소 구조해석을 수행하였다. 구조설꼐에서는 파라미터 분석 연구를 통해 블레이드 구조형상을 결정하였고, 대부분의 주요 설꼐 피라미터를 결정하였다. FEM을 이용한 응력해석결과를 검토하여 설계된 블레이드 구조는 어떠한 하중조건에 대해서도 안전함을 확인하였다. 뿐만 아니라, 본 연구에 의해 새롭게 고안된 삽입볼트를 사용한 허브 연결부의의 설계하중과 피로하중에 대한 안전성을 검토하였으며, 잘 알려진 S-N 선형 손상 이론, 하중 스펙트럼 및 Spera의 실험식에 의해 20년 이상의 피로수명을 갖도록 하였다. 몇 개의 집중하중으로 모사된 공력하중에 대한 실물 정적구조시험을 수행하였으며, 실험결과로부터 설계된 블레이드는 구조적으로 안전함을 확인하였다. 더욱이, 변위 및 응력, 중량, 무게중심 증의 측정된 결과는 해석결과와 일치함을 확인하였으며, 연구된 블레이드는 독일의 국제적 인증기관인 GL사의 인증을 획득하였다.

Keywords

References

  1. Ackermann, T. and Soder, L., Wind Energy Technology and Current Status, Renewable and Sustainable Energy Reviews, Vol.4, 2000, pp.315-374. https://doi.org/10.1016/S1364-0321(00)00004-6
  2. Windpower Monthly, Industrial Magazine, ISSN 0901-7318, Monthly Published since 1985.
  3. Kim, J. S., Renewable Energy Development and Supply in Korea, Ministry of Commerce, Industry and Energy and Korean Energy Management Corporation, 2000.
  4. Kong, C., Bang, J. and Kim, H., A Study on Aerodynamic Analysis and Starting Simulation for Horizontal Axis Wind Turbine Blade, J. of KSPE, Vol.3, No.3, 1999, pp.40-46.
  5. Kong, C., Bang, J., and Jeong, J., A Study on Fatigue Life Design for Horizontal Axis Wind Turbine Composite Blade, J. of KSPE, Vol.3, No.3, 1999, pp.47-52.
  6. Kong, C., Bang, J., Jeong, S., Ryu, J. and Kim, Y., Structural Design of Medium Scale Composite Wind Turbine Blade, Proceedings of the third Asian-Pacific Conference on Aerospace Technology and Sceince(APCATS2000), 2000, pp.376-384.
  7. Kong, C., Jeong, S., Jang, B. and Bang, J., Design Improvement on Wind Turbine Blade of Medium Scale HAWT by Considering IEC1400-1 Specification, J. of KSPE, Vol.4, No.3, 2000, pp.29-37.
  8. Kong, C. and Kim, J., Structural Design of Medium Scale Composite Wind Turbine Blade, KSAS International J, Vol.1, No.1, 2000.
  9. Kong, C., Bang, J., Kang, M., Jeong, S. and Yoo, J., Structural Design of Medium Scale Composite Wind Turbine Blade, 13th International Conference on Composite Materials(ICCM-13), 2001.
  10. Mayer, R. M., Design of Composite Structures against Fatigue Applications to Wind Turbine Blades, Antony Rowe Ltd., 1996, pp.195-208.
  11. Gourieres, D. L. E., Wind Power Plants Theory and Design, Pergamon Press, 1982.
  12. Kong, C., Kim, H. and Kim, J., A Study on Structural and Aerodynamic Design of Composite Blade for Large Scale HAWT System, Final Report, Hankuk Fiber Ltd., 2000.
  13. IEC, International Standard, Wind Turbine Generator System-Part I : Satefy Requirements, 1994.
  14. Technical Note: IEC 1400-1 GL Test Regulation, 2000.
  15. Germanischer Lloyd, Regulations for the Certification of Wind Energy Conversion System, Germanischer Lloyd, 1999.
  16. Palmgren, A., Die Lebendauer von Kugellagern, Zeitschrift von Deutche Ingenieurring, Vol.68, 1924, pp.339-341.
  17. Miner, M. A., Cumulative Damage in Fatigue, Journal of Applied Mechnics, Vol.12, 1945, pp.A-159-164.
  18. Mandell, J. F., Reed, R. M. and Samborsky, D. D., Fatigue of Fiberglass Wind Turbine Blade Materials, Sandia National Laboratories, Albuquerque, New Mexico, SAND92-7005, 1992.
  19. Veers, P. S., Lange, C. H. and Winterstein, S. R., Farow: A Tool for Fatigue and Reliability of Wind Turbines, Windpower93, 1993, pp.342-349.
  20. Bishop, N. W. M. and Zhihua, H., The Fatigue Analysis of Wind Turbine Blades Using Frequency Domain Techniques, Amsterdam EWEC91, 1991.
  21. Broek, D., Elementary Engineering Fracture Mechnics, Martinus Nijhoff Publishers, 1982.
  22. Mayer, R. M., Design of Composite Structures against Fatigue Applications to Wind Turbine Blades, Antony Rowe Ltd., 1996, pp.195-208.
  23. Delft, D. R. V., Corber, D. C., and van Leeuwe, J. L., Full Scale Fatigue Tests of Wood-Epoxy Blades, Amsterdam EWEC91, 1991.
  24. Inomata, N., Tsuchiya, K. and Yamada, S., Measurement of Stress on Blade of NEDOs 500 kw Prototype Wind Turbine, Renewable Energy, Vol.16, 1999, pp.912-915. https://doi.org/10.1016/S0960-1481(98)00309-7
  25. Bechly, M. E., and Clausent, P. D., Technical Note: Structural Design of a Composite Wind Turbine Blade Using Finite Element Analysis, Computer & Structures, Vol.63, No.3, 1997, pp.639-646. https://doi.org/10.1016/S0045-7949(96)00387-2
  26. EMRC, NISAII-Users Manual, version5.2, 1992.
  27. Palmgren, A., Die Lebendauer von Kugellagern, Zeitschrift von Deutche Ingenieurring, Vol.68, 1924, pp.339-341.
  28. Miner, M. A., Cumulative Damge in Fatigue, Journal of Applied Mechanics, Vol.12, 1945, pp.A-159-164.
  29. Spera, D. A., Dynamic Loads in Horzontal-Axis Wind Turbines Part II : Empirical Equations, Windpower93, 1993, pp.282-289.
  30. Mandell, J. F., Reed, R. M. and Samborsky, D. D., Fatigue of Fiberglass Wind Turbine Blade Materials, Sandia National Laboratories, Albuquerque, New Mexico, SAND92-7005, 1992.
  31. Veers, P. S., Lange, C. H. and Winterstein, S. R., Farow: A Tool for Fatigue and Reliability of Wind Turbines, Windpower93, 1993, pp.342-349.
  32. Delft, D. R. V., Corber, D. C., and van Leeuwe, J. L., Full Scale Fatigue Tests of Wood-Epoxy Blades, Amsterdam EWEC91, 1991.
  33. Inomata, N., Tsuchiya, K. and Yamada, S., Measurement of Stress on Blade of NEDOs 500kW Prototype Wind Turbine, Renewable Energy, Vol.16, 1999, pp.912-915. https://doi.org/10.1016/S0960-1481(98)00309-7
  34. Zweben, C., Thomas, H.H. and Chou, T.W., Mechanical Behavior and Properties of Composite Meterials volume 1, Technomic Publishing Co., INC., 1989.
  35. D. A. Spera, Wind Turbine Technology, ASME Press, 1994, pp.547-588, pp.534.