Dynamics of Phytoplankton and Zooplankton of a Shallow Eutrophic Lake (lake llgam)

수심이 얕은 부영양 인공호(일감호)의 동 ${\cdot}$ 식물플랑크톤 동태학

  • Kim, Ho-Sub (Department of Biological Systems Engineering, Konkuk University) ;
  • Park, Je-Chul (Department of Environmental Engineering, Kumoh National Institute of Technology) ;
  • Hwang, Soon-Jin (Department of Biological Systems Engineering, Konkuk University)
  • 김호섭 (건국대학교 지역건설환경공학과) ;
  • 박제철 (금오공과대학교) ;
  • 황순진 (건국대학교 지역건설환경공학과)
  • Published : 2003.09.30

Abstract

This study was attempted to understand seasonal dynamics of phyto- and zooplankton communities in shallow, eutrophic Lake llgam and to compare them with the PEG (Plankton Ecology Group) model. Seasonal succession pattern of phytoplankton community was similar to PEG model as Chlorophyceae and Baciliphyceae increase during spring and autumn fellowed by increase of Cyanophyceae. However, based on the cell density and biomass, a dominant phytoplankton community differed with PEG model: Cyanophyceae had been a dominant community throughout a year, except for ice-cover period during which Chlorophyceae was a dominant group. In spring, when ice melted and dissolved nutrients in water column increased, the increase of Chlorophyceae occurred: when nutrients (DIN and DIP) rapidly decreased, Cyanophyceae increase occurred. Microcystis, Oscillatoria, Lyngbya, Merismopedia were maior dominant species of Cyanophyceae and their cell density and/or biomass was the highest in October 2000 (12.9${\pm}$5.8${\times}10^5$ cells/ml, 3.5${\pm}$0.9${\times}10^3{\mu}gC/l$). Cyanophyceae biomass showed positive relationship with chlorophyll a ($r^2$ = 0.71,P< 0.001) and TP concentration ($r^2$ = 0.62, P< 0.001). Small-sized rotifers such as Keratella cochlearis, increased between March and May when Chlorophyceae increased. Both high standing crop of copepods and cladocerans, such as Diaphanosoma brachyrum and Bosmina longirostris occurred between June and September accompanied with the increase of Dinophyceae and Bacillariophyceae. There was no evidence that clear-water phase was caused by zooplankton grazing. The diversity and evenness index of phyto- and/or zooplankton increased with chlorophyll a concentration. These results suggest zooplankton grazing and limiting nutrient deficiency could lead to change of phytoplankton biomass, but not the phytoplankton community in Lake llgam.

본 연구는 수심이 얕고 부영양화가 지속되고 있는 인공호수에서의 동 ${\cdot}$식물플랑크톤의 종 조성과 현존량의 계절변화, 수질인자와의 상관관계 그리고 PEG모델과의 비교를 위해 실시되었다. 식물플랑크톤의 분류군 별 계절적 출현양상은 봄과 가을에 녹조류와 규조류가 우점하고 여름에 남조류의 현존량이 증가함에 따라 PEG모델과 유사하였다. 그러나 현존량에 의한 우점종의 변화는 2002년 1월부터 3월가지 녹조류가 우점했던 것을 제외하고는 조사기간 내내 남조류가 우점 함으로써 PEG모델과 다르게 나타냈다. 수체 내 영양염의 증가가 나타난 봄철 녹조류가 증가하였고, 무기영양염의 감소와 함께 남조류의 우점비율이 증가하였다. 주요출현 남조류는 Microcystis, Oscillatoria, Lyngbya, Merismopedia속 내종들 이였고, 2000년 10월에 가장 높은 현존량을 나타났으며 (12.9${\pm}$5.8${\times}10^5$ cells/ml, 3.5${\pm}$0.9${\times}10^3{\mu}gC/l$), 엽록소 a ($r^2$ = 0.71, P< 0.001), TP농도 ($r^2$ = 0.62, P< 0.001)와 양의 상관관계를 나타냈다. 녹조류가 우점한 3월부터 5월 사이에 윤충류인 Keratella cochlearis와 같은 크기가 작은 윤충류의 증가가 나타났다. 성체보다는 대부분 유생의 비율이 (70%이상)높았던 요각류와 지각류 (Diaphanosoma brachyurum, Bosmina longirostris등)의 현존량 증가는 식물플랑크톤 중 와편모조류와 규조류가 증가한 6월과 9월 사이에 나타났다($r^2$=0.73, P< 0.001). 본 연구기간동안 동물플랑크톤 섭식에 의한 청수기는 관찰되지 않았으며, 동 ${\cdot}$ 식물플랑크톤의 다양성은 식물플랑크톤의 생물량 증가 시 회복되는 것으로 나타났다. 본 연구결과에서는 부영양 호수에서 동물플랑크톤의 섭식이나 제한영양염의 결핍이 식물플랑크톤의 현존량에 영향을 출 수 있으나 군집의 변화를 야기하지는 못함이 제시되었다.

Keywords

References

  1. 김범철, 김재옥, 전만식, 황순진. 1999. 소양호 동.식물플랑크톤의 계절변동. 한국육수학회지 32: 127-134.
  2. 김윤희, 1998. 홍수시 소양호에서 중층탁류의 이동 및 영향에 관한 연구. 강원대학교 환경학과 석사학위논문.
  3. 김호섭, 황순진, 고재만. 2003. 도심의 얕은 인공호인 일감호의 수질변화특성과 퇴적환경의 평가. 한국육수학회지 36:161-171.
  4. 조규송. 1993. 한국담수동물플랑크톤 도감. 아카데미서적.
  5. Agbeti, M.D. and J.O. Smol. 1995. Winter limnology: Comparisonof physical, chemical and biological characteristicsin two temperatate lakes during lakes duringice over. Hydrobiol. 304: 221-234.
  6. Agbeti, M.D. and J.O. Smol. 1995. Winter limnology: Comparisonof physical, chemical and biological characteristicsin two temperatate lakes during lakes duringice over. Hydrobiol. 304: 221-234.
  7. Balcer, M.D., N.L. Korda and S.I. Dodson. 1984. Zooplanktonof the greatlakes. A guide to the identification andecology of the common crustacean species. The universityof Wisconsin Press.
  8. Benndorf, J. and M. Henning. 1989. Daphnia and toxicblooms of Microcystis aeruginosa in Bautzen Reservoir(GDR). Int. Rev. Ges. Hydrobiol. 74: 233-248.
  9. Carpenter, S.R. and J.R. Kitchell. 1993. Cascading trophicinteractions and lake productivity. Biosci. 35: 634-639.
  10. Connell, J. 1978. Diversity in tropical rainforests and coralreefs. Sci. 199: 1304-1310.
  11. Culver, D.A., M.M. Boucherle, D.J. Bean and J.W. Flethcer.1985. Biomass of freshwater crustacean zooplanktonfrom Length-Weight regressions. Can. J. Fish. Aquat.Sci. 42: 1380-1390.
  12. Downing, J.A. and H.R. Frank. 1984. A mamual on methodsfor the assessment of secondary productivity infreshwaters. Blackwell Scientific Publications.
  13. Dumont, H.J., L.V. De Velde and S. Dumont. 1975. The dryweight estimate of biomass in a selection of Cladocera,Copepoda, and Rotifera from the plankton, periphyton,and benthos of continental waters. Oecologia. 91: 75-97.
  14. Gulati, R.D. 1983. Zooplankton and its grazing as indicatorsof trophic status in Dutch lakes. EnvironmentalMonitoring and Assessment pp. 343-354.
  15. Hall, D.T., S.T. Threlkeld, C.W. Burns and P.H. Crowley.1976. The size-efficiency hypothesis and the size structureof zooplankton communities. Annual Review ofEcology and Systematics 7: 177-208.
  16. Holm, N.P. and D.E. Armstrong. 1981. Role of nutrientlimitation and competition in controlling the popula-tions of Asterionella formosa and Microcystis aeruginosain semi-continuous culture. Limnol. Oceanogr.26: 622-634.
  17. Hoyer, M.V. and J.R. Jones. 1983. Factors affecting theralation between phosphorus and chlorophyll a in USAmidwestern reservoirs. Can. J. Fish. Aquat. Sci. 40:192-199.
  18. Hutchinson, C.E. 1957. A treaties on limnology. I, Geography Physics and Chemistry. New York, Jone Wiley and Sons Inc. 1015pp.
  19. Hutchinson, C.E. 1961. The paradox of the plankton. Am.Nat. 95: 137-147.
  20. Interlandi, S.J. and S.S. Kilham. 2001. Limiting resourcesand the regulation of diversity in phytoplankton community.Ecol. 82: 1270-1282.
  21. Kellar, P.E., S.A. Paulson and L.J. Paulson. 1980. Methodsfor biological, chemical and physical analyses in reservoirs.Tech. Rep. Lake Mead Limnological Res. Center,Univ. Nevada, Las Vegas. 234pp.
  22. Lampert, W., W. Flecker, H. Rai and E. Taylor. 1986.Phytoplankton control by grazing zooplankton: A studyon the spring clear-water phase. Limnol. Oceanogr. 31:478-490.
  23. Lampert, W. 1987. Laboratory studies on zooplanktoncyanobacteriainteractions, N.Z.J. Mar. Freshwat. Res.21: 483-490.
  24. Lathrop, R.C. and S.R. Carpenter. 1990. Zooplankton andtheir relationship to phytoplankton, pp.127-150. In:Food Web management (J.F. Kitchell, ed.). Springer-Verlag, New York.
  25. Mullin, M.M., P.R. Sloan and R.W. Eppley. 1966. Relationshipbetween carbon content, cell volume, and areain phytoplankton. Limnol. Oceanogr. 11: 307-311.
  26. Pace, M.L. and J.D. Orcutt. 1981. The relative importanceof protozoans, rotifers, and crustaceans in a freshwaterzooplankton community. Limnol. Oceanogr. 26: 822-830.
  27. Phlips, E.J., M. Cichra, K.E. Havens, C. Hanlon, S. Badylak,B. Rueter, M. Randall and P. Hansen. 1997. Relationshipsbetween phytoplankton dynamics and the availabilityof light and nutrients in a shallow subtrophicallake. J. Plankton Res. 19: 319-342.
  28. Reynolds, R.D., R.L. Oliver and A.E. Walsby. 1987. Cyanobacterialdominance: The role of buoyancy regulation indynamic lake envrionments. N.Z.J. Mar. Freshwat.Res. 21: 379-390.
  29. Reynolds, C.S. 1989. Relationships among the biologicalproperties, distribution and regulation of production byplanktonic cyanobacteria. Toxicity Assessment 4: 229-255.
  30. Reynolds, C.S., J. Padisak and U. Sommer. 1993. Intermediatedisturbance in the ecology of phytoplankton andthe maintenance of species diversity: a synthesis. Hydrobiol.249: 183-188.
  31. Richerson, P., R. Armstrong and C.R. Goldman. 1970.Contemporaneous disequilibrium, a new hypothesis toexplain “the paradox of the plankton.” Proceedings ofthe Academiy of science (USA) 67: 1710-1714.
  32. Scheffer, M. 1998. Seasonal dynamics of plankton and fish,pp. 168-169 In: Ecology of shallow lakes (M. Scheffer,ed.). Chapman & Hall, London∙Weinheim∙NewYork∙Tokyo∙Melbourne∙Madras.
  33. Sommer, U. 1983. Nutrient competition between phytoplanktonspecies in multispecies chemostat experiment.Arch. Hydrobiol. 96: 399-416.
  34. Sommer, U. 1984. The paradox of the plankton: fluctuationsof phosphorus availability maintain diversity ofphytoplankton in flow-through cultures. Limnol. Oceanogr.29: 633-636.
  35. Sommer, U., Z.M. Gliwicz, W. Lampert and A. Duncan.1986. The PEG-model of seasonal succession of planktonicevents in fresh waters. Arch. Hydrobiol. 106: 433-471.
  36. Sommer, U. 1993. Disturbance-diversity relationships intwo lakes of similar nutrient chemistry but contrastingdisturbance regimes. Hydrobiol. 249: 59-65.
  37. Sommer, U. 1995. An experimental test of the intermediatedisturbance hypothesis using cultures of marine phytoplankton.Limnol. Oceanogr. 40: 1271-1277.
  38. Stemberger, R.S. 1979. A guide to rotifers of the Laurentian Great Lakes. EPA-600/4-79-021.
  39. Strathmann, R.R. 1967. Estimating the organic carboncontent of phytoplankton from cell volume or plasmavolume. Limnol. Oceanogr. 12: 411-418.
  40. Tilman, D. 1982. Resource competition and communitystructure. Princeton Univ. Press, Princeton, N. J.
  41. Tilman, D. and R.L. Kiesling. 1984. Freshwater algal ecology:Taxonomic trade-offs in the temperature dependenceof nutrient competitive abilities. In: Currentperspectives of microbial ecology. Am. Sco. Microbiol.pp. 314-896.
  42. Vanni, M.J. and J. Temte. 1990. Seasonal patterns of grazingand nutrient limitation of phytoplankton in a eutrophiclake. Limnol. Oceanogr. 12: 411-418.
  43. Wetzel, R.G. 1983. Limnology. Saunders College Publishing,Philadelphia, Pennsylvania, USA.