Comparisons of sample preparation (acid digestion and microwave digestion) and measurement (inductively coupled plasma mass spectrometry and graphite furnace atomic absorption spectrometry) in the determination of bone lead

골중납 측정의 시료 전처리 (산분해법과 마이크로웨이브 분해법)와 측정 방법 (유도결합 플라즈마 질량분석법과 흑연로 원자 흡수 분광 광도법)의 비교

  • Yoon, Chungsik (Department of Occupational Health, Catholic University of Daegu) ;
  • Choi, Inja (Wonjin Institute for Occupational & Environmental Health) ;
  • Park, Sungkyun (Department of Environmental Health, Harvard School of Public Health) ;
  • Kim, Rokho (Department of Environmental Health, Harvard School of Public Health)
  • 윤충식 (대구가톨릭대학교 산업보건전공) ;
  • 최인자 (원진노동환경건강연구소) ;
  • 박성균 (하버드대학교 보건대학원 환경보건학과) ;
  • 김록호 (하버드대학교 보건대학원 환경보건학과)
  • Received : 2003.02.14
  • Accepted : 2003.03.18
  • Published : 2003.04.25

Abstract

This study was conducted to evaluate two sample digestion procedures and instrumental determination parameters for analysis of lead in bone. Amputated human legs were treated by acid digestion or microwave dissolution prior to spectrometric analysis. Inductively coupled plasma mass spectrometry (ICP-MS) and graphite furnace atomic absorption spectrometry (GF-AAS) were used for determining bone lead levels. Recovery efficiencies using standard reference material from acid digestion measured by ICP-MS were in good agreement with those of the certified value, but in cases of acid digestion by GF-AAS and microwave digestion by both two methods, recovery underestimated and overestimated, respectively. For the bone samples, the lead concentrations obtained by ICP-MS after acid digestionwere in good agreement with those by GF-AAS (correlation coefficient = 0.983), but GF-AAS gave systematically higher values than ICP-MS. While a good agreement between two analytical methods after microwave digestion was also obtained (correlation coefficient = 0.950), bone lead concentrations from microwave were relatively higher than those from acid digestion. In conclusion, the use of the simple nitric acid digestion procedure at an ambient temperature coupled to ICP-MS seems to be efficient for the determination of lead in bone in consideration for both the convenience and validity.

본 연구는 인체의 골중 납 농도를 측정하는데 필요한 시료 전처리법과 기기 분석법을 평가하기 위하여 수행되었다. 절단한 인간 사체 다리의 뼈를 상온에서의 산 분해법과 마이크로웨이브 분해법 (microwave oven method)을이용하여 납을 추출하였으며, 유도결합 플라즈마 질량분석법 (ICP-MS)과 흑연로 원자 흡수 분광 광도법 (GF-AAS)으로 납 농도를 측정하였다. 표준시료를 이용하여 회수율을 조사한 결과, 산분해 후 ICP-MS로 측정한 경우 높은 회수율을 보였으나, 산분해 후 GF-AAS로 측정한 것은 표준 농도보다 낮은 값을 보였으며, 마이크로웨이브 분해한 경우는 두 측정기기 모두 표준 농도보다 높은 값을 보였다. 뼈 시료의 경우, 산분해 후 ICP-MS로 측정한 납 농도는 GF-AAS의 값과 높은 상관성을 보였으나 (상관계수 = 0.983), GF-AAS가 ICP-MS보다 계통적으로 높은 값을 측정하였다. 마이크로웨이브 분해 역시 두 분석방법이 높은 상관성을 보였으나 (상관계수 = 0.950), 대체로 산분해에 의한 값보다 높은 농도를 보였다. 결론적으로, 상온에서 질산으로 분해 후 ICP-MS를 이용하여 측정한 것이 골중 납 농도를 결정하는데 편이성과 정확성 면에서 가장 효율적인 방법으로 보인다.

Keywords

References

  1. Environ. Health Perspect. v.106 no.SUP.4 H. Hu
  2. Physics in Medicine and Biology v.40 no.9 K X-ray fluorescence measurements of bone lead concentration: the analysis of low-level data R. Kim;A. Aro;A. Rotnitzky;C. Amarasiriwardena;H. Hu https://doi.org/10.1088/0031-9155/40/9/007
  3. Environmental Health Criteria No. 3. Lead International Programme on Chemical Safety
  4. Archives of Environmental Contamination and Toxicology v.24 no.4 Bone-lead analysis: development of analytical methodology for milligram samples. K. S. Subramanian;J. W. Connor;J. C. Meranger https://doi.org/10.1007/BF01146168
  5. Clinica Chimica Acta v.293 no.1-2 J. Scancar;R. Milacic;M. Benedik;P. Bukovec https://doi.org/10.1016/S0009-8981(99)00239-9
  6. Sci. Total Environ v.159 no.2;3 I. Baranowska;K. Czemicki;R. Aleksandrowicz
  7. Arch Environ Health v.43 L. E. Wittmers;J. Wallgren;A. C. Aufderheide;G. Rapp
  8. The Science of The Total Environment v.64 no.3 Lead in human bones. Investigations on an occupationally non-exposed population in Southern Bavaria (F.R.G.) I. Adults G. A. Drasch;J. Bhn;C. Baur https://doi.org/10.1016/0048-9697(87)90252-X
  9. Science of The Total Environment v.162 no.2 Trace elements in ribs of elderly people and elemental variation in the presence of chronic diseases J. Yoshinaga;T. Suzuki;M. Masatoshi;M. Hayakawa https://doi.org/10.1016/0048-9697(95)04470-L
  10. Medical Physics v.27 no.1 Validation of K x-ray fluorescence bone lead measurements by inductively coupled plasma mass spectrometry in cadaver legs. A. Aro;C. Amarasiriwardena;M-L. Lee;R. Kim;H. Hu https://doi.org/10.1118/1.598863
  11. Clinica Chimica Acta v.221 no.1-2 F. Gil;M. L. Prez;A. Facio;E. Villanueva;R. Tojo;A. Gil https://doi.org/10.1016/0009-8981(93)90019-Z
  12. Introduction to microwave samples preparation Manual and robotically controlled microwave pressure dissolution of minerals J. M. Labrecque;H. M. Kinston(Ed.);L. B. Jassie(Ed.)
  13. The Science of The Total Environment v.255 no.1-3 H.-W. Kuo;S.-M. Kuo;C.-H. Chou;T.-C. Lee https://doi.org/10.1016/S0048-9697(00)00448-4
  14. Analytical Science & Technology v.15 no.4 C.S. Yoon;I.J. Choi;T.S. Kang;W.S. Yang;D.W. Park;D.Y. Park
  15. Journal of Analytical Atomic Spectrometry v.11 no.1 Y. Y. Zong;P. J. Parsons;W. Slavin https://doi.org/10.1039/ja9961100025
  16. J. AOAC Int v.81 no.6 P. H. Siitonen;H. C. Thompson, Jr